Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 6(16): 4103-4110, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39114155

ABSTRACT

In this paper, we report the effect of MnS nanoparticles on the electrochemical performance of 1D-MnO2 stable nanorods for supercapacitor electrodes. The MnS-incorporated 1D-MnO2 (MnO2/MnS) nanorods were produced using a facile two-step hydrothermal method. Morphological investigation reveals that the incorporation of MnS nanoparticles distorts the lattice fringes and extends the interlayer spacing of the MnO2 nanorods. The structural study showed that MnS modified the structural parameters of the nanocomposite. XPS analysis revealed defects in the nanocomposite due to the generation of oxygen vacancies. The MnO2/MnS nanocomposite improves capacitive performance and has the highest specific capacitance of 305 F g-1, at a current density of 1 A g-1 with an energy density of 5.7 W h kg-1 and a power density of 449 W kg-1. The MnO2/MnS nanocomposite electrodes exhibit exceptional cyclic stability after 5000 charging and discharging cycles. With enhanced specific capacitance and excellent cyclic stability, the MnO2/MnS nanocomposite paves a new way to produce supercapacitor electrodes.

2.
ACS Omega ; 9(9): 10680-10693, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463271

ABSTRACT

The large number of active sites in the layered structure of δ-MnO2 with considerable interlayer spacing makes it an excellent candidate for ion storage. Unfortunately, the δ-MnO2-based electrode has not yet attained the exceptional storage potential that it should demonstrate because of disappointing structural deterioration during periodic charging and discharging. Here, we represent that stable Na ion storage in δ-MnO2 may be triggered by the preintercalation of K ions and water molecules. Furthermore, the sluggish reaction kinetics and poor electrical conductivity of preintercalated δ-MnO2 layers are overcome by the incorporation of h-WO3 in the preintercalated δ-MnO2 to form novel composite electrodes. The composites contain mixed valence metals, which provide a great number of active sites along with improved redox activity, while maintaining a fast ion transfer efficiency to enhance the pseudocapacitance performance. Based on our research, the composite prepared from preintercalated δ-MnO2 with 5 wt % h-WO3 provides a specific capacitance of up to 363.8 F g-1 at a current density of 1.5 A g-1 and an improved energy density (32.3 W h kg-1) along with an ∼14% increase in capacity upon cycling up to 5000 cycles. Hence, the interaction between the preintercalated δ-MnO2 and h-WO3 nanorods results in satisfactory energy storage performance due to the defect-rich structure, high conductivity, superior stability, and lower charge transfer resistance. This research has the potential to pave the way for a new class of hybrid supercapacitors that could fill the energy gap between chemical batteries and ideal capacitors.

3.
Heliyon ; 10(4): e26631, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420414

ABSTRACT

In this work, MnO2/NiO nanocomposite electrode materials have been synthesized by a cost-effective hydrothermal method. The effect of the concentrations (0, 1, 3, 5, and 7 wt%) of NiO nanoparticles on the surface morphology, structural properties, and electrochemical performance of the nanocomposites was characterized by different characterization techniques. The scanning electron micrographs (SEM) reveal that the as-prepared NiO nanoparticles are well connected and stuck with the MnO2 nanowires. The transmission electron microscopy (TEM) analysis showed an increase in the interplanar spacing due to the incorporation of NiO nanoparticles. The different structural parameters of MnO2/NiO nanocomposites were also found to vary with the concentration of NiO. The MnO2/NiO nanocomposites provide an improved electrochemical performance together with a specific capacitance as high as 343 F/g at 1.25 A/g current density. The electrochemical spectroscopic analysis revealed a reduction in charge transfer resistance due to the introduction of NiO, indicating a rapid carrier transportation between the materials interface. The improved electrochemical performance of MnO2/NiO can be attributed to good interfacial interaction, a large interlayer distance, and low charge transfer resistance. The unique features of MnO2/NiO and the cost-effective hydrothermal method will open up a new route for the fabrication of a promising supercapacitor electrode.

4.
Heliyon ; 10(3): e25424, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356515

ABSTRACT

Bio-derived chitosan-molybdenum di sulfide (Cs-MoS2) nanocomposites are prepared by a simple and economical aqueous casting method with varying concentrations of MoS2. The structural, surface morphological, optical, and electrochemical properties of the nanocomposites were studied. FTIR analysis reveals the strong interaction between Cs and MoS2. FESEM micrograph showed an increment of the surface roughness due to the incorporation of MoS2 layers into Cs. The surface wettability of the nanocomposites was found to be decreased from 73° to 33° due to the incorporation of MoS2 into the chitosan. UV-vis spectroscopy study demonstrates a reduction of optical bandgap from 4.29 to 3.44 eV as the nanofiller, MoS2, introduces localized states within the forbidden energy bandgap. The incorporation of MoS2 was found to increase the specific capacitance of Cs from 421 mFg-1 to 1589 mFg-1 at a current density of 100 µAg-1. The EIS analysis revealed an increase in the pseudo-capacitance from 0.09 µF to 4.13 µF and a reduction of charge transfer resistance that comes from the nanofiller contribution. MoS2 nanoflower introduces more active sites and expands the electroactive zone, thus improving the charge storage property of Cs. The Cs-MoS2 may offer a new route for the synthesis of eco-friendly, biodegradable, and electrical storage devices.

5.
PLoS One ; 18(11): e0288113, 2023.
Article in English | MEDLINE | ID: mdl-37943871

ABSTRACT

Multi-walled carbon nanotube (MWCNT) incorporated biodegradable gelatin nanocomposites (Gel/MWCNT) have been prepared following a facile solution processing method. The Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electronic microscopy (FESEM), and water contact angle (WCA) measurements revealed improved structural properties and surface morphological features of the nanocomposite films due to the incorporation of MWCNT. A four-fold decrease in the DC resistivity was obtained due to the addition of MWCNTs. The specific capacitance of the nanocomposite increased from 0.12 F/g to 12.7 F/g at a current density of 0.3 µA/cm2 due to the incorporation of 0.05 wt.% MWCNT. EIS analysis and the corresponding Nyquist plots demonstrated the contributions of the different electrical components responsible for the improved electrochemical performance were evaluated using an equivalent AC circuit. The incorporation of MWCNTs was found to reduce the charge-transfer resistance from 127 Ω to 75 Ω and increase the double-layer capacitance from 4 nF to 9 nF. The Gel/MWCNT nanocomposite demonstrated improved cyclic stability with a retention of 95% of the initial capacitance even after 5000 charging/discharging cycles. The biodegradability test showed that the nanocomposite degraded completely after 30 hours of immersion in water. This fully biocompatible nature of the nanocomposites with high specific capacitance and low charge transfer resistance may offer a promising route to fabricate a nature-friendly electrode material for energy storage applications.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Gelatin , Biopolymers , Microscopy, Electron, Scanning , Water
6.
Sci Rep ; 13(1): 20967, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017146

ABSTRACT

A ternary nanocomposite of plasticized starch (PS), reduced graphene oxide (rGO), and molybdenum disulfide (MoS2) was prepared via a solution casting process, with MoS2 concentrations ranging from 0.25 to 1.00 wt%. The structural, surface morphological, optical, and electrochemical properties of the nanocomposites were studied. FTIR analysis reveals the formation of new chemical bonds between PS, rGO, and MoS2, indicating strong interactions among them. The XRD analysis showed a reduction in the crystallinity of the nanocomposite from 40 to 21% due to the incorporation of nanofiller. FESEM micrograph showed an increment of the surface roughness due to the incorporation of rGO-MoS2 layers. UV-vis spectroscopy demonstrated a reduction of optical bandgap from 4.71 to 2.90 eV, resulting from enhanced charge transfer between the layers and defect states due to the addition of nanofillers. The incorporation of MoS2 increase the specific capacitance of the PS from 2.78 to 124.98 F g-1 at a current density of 0.10 mA g-1. The EIS analysis revealed that the nanofiller significantly reduces the charge transfer resistance from 4574 to 0 Ω, facilitating the ion transportation between the layers. The PS/rGO/MoS2 nanocomposite also exhibited excellent stability, retaining about 85% of its capacitance up to 10,000 charging-discharging cycles. These biocompatible polymer-based nanocomposites with improved electrochemical performance synthesized from an easy and economical route may offer a promising direction to fabricate a nature-friendly electrode material for energy storage applications.

7.
Heliyon ; 9(3): e14536, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36950618

ABSTRACT

In this work, Co3O4 nanoparticle-decorated MoS2 (MoS2@Co3O4) hetero-nanoflowers were synthesized by a facile hydrothermal method, and the effect of Co3O4 on the morphological, structural, optical, electronic, and photocatalytic properties of MoS2 was analyzed. The surface morphology of MoS2 and MoS2@Co3O4 was studied via field emission electron microscopy (FE-SEM) and transmission electron microscopy (TEM), which revealed a strong interaction between the MoS2 nanoflower and the nanoparticles. The X-ray diffraction pattern showed a decrease in the crystallite sizes from 7.35 nm to 6.26 nm due to the incorporation of Co3O4. The UV-Vis spectroscopy of the analysis revealed that the indirect band gap of MoS2 was reduced from 1.89 eV to 1.65 eV with the incorporation of Co3O4 nanoparticles. Density functional theory (DFT) calculations were used to investigate the electronic properties of MoS2 and MoS2@Co3O4 hetero-nanoflowers, which also showed a reduction in the electronic band gap for the Co3O4 nanoparticles that were injected. The presence of defect states was also observed in the electronic property of MoS2@Co3O4. The photocatalytic activity of the prepared composite and nanoflower is studied using an aqueous solution of methylene blue (MB), and the efficiencies are found to be 27.96% for MoS2 and 78.89% for MoS2@Co3O4. The improved photocatalytic efficiency of MoS2@Co3O4 hetero-nanoflower can be attributed to narrowing the band gap together with the creation of defect states by the injection of nanoparticles that slows down electron-hole recombination rate by trapping charge carrier. The degradation analysis of the composite provides a new route for the purification of polluted water.

8.
RSC Adv ; 12(23): 14686-14697, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35702198

ABSTRACT

In this work, multi wall carbon nanotube (MWCNT) reinforced bio-derived gelatin-based polymer nanocomposites were synthesized following an easy and affordable solution-casting method. The effects of different concentrations of MWCNTs on the structural, surface morphological, and dielectric properties of the nanocomposites were studied. A four-fold increase in the dielectric constant is observed due to the incorporation of just 0.02 wt% of MWCNT nanofiller into the polymer matrix. The modified Cole-Cole model was used to analyze the effect of nanofiller concentrations on the different dielectric parameters of the nanocomposite. The incorporation of MWCNTs was found to increase the dielectric strength and reduce the relaxation time of the nanocomposite. The AC conductivity of the nanocomposites was found to be improved due to the incorporation of the MWCNT nanofiller. A quantitative study based on the simulation of the complex impedance spectra demonstrates that the addition of MWCNTs into the nanocomposite decreases the grain barrier resistance from 5935 kΩ to 261 kΩ and increases the capacitive component from 0 to 23.25 µF. The improved dielectric performance of the nanocomposites can be attributed to the space charge polarization effect and is illustrated with a charge transport mechanism model. This biopolymer-based nanocomposite material with a large dielectric constant together with a small loss tangent may offer a potential route for the fabrication of fully biocompatible electrostatic capacitors and energy storage devices.

9.
Heliyon ; 7(7): e07468, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34278039

ABSTRACT

Wide-scale production of non-biodegradable e-waste from electrical appliances are causing great harm to the environment. The use of bio-polymer based nanomaterials may offer a promising approach for the fabrication of eco-friendly sustainable devices. In this work, gelatin/single walled carbon nanotube (Gel/SWCNT) nanocomposites were prepared by a simple and economic aqueous casting method. The effect of SWCNT on the structural, surface-morphological, electrical, and electrochemical properties of the nanocomposite was studied. Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FESEM) showed an improved degree of interaction between the SWCNTs and Gel matrix. The surface wettability of the nanocomposites was found to be changed from hydrophilic to hydrophobic in nature due to the incorporation of SWCNTs into the Gel matrix. The incorporation of SWCNTs was also found to reduce the DC resistivity of the nanocomposite by 4 orders of magnitude. SWCNTs also increase the specific capacitance of the nanocomposite from 124 mF/g to 467 mF/g at a current density of 0.3 mA/g. The electrochemical impedance spectroscopy analysis revealed an increase of the pseudo-capacitance increased from 9.4 µF to 31 µF due to the incorporation of SWCNT. The Gel/SWCNT nanocomposite showed cyclic stability with capacitive retention of about 98% of its initial capacitance after completing 2000 charging/discharging cycles at a current density of 100 mA/g. The nanocomposite completely dissolves in water within 12 h, demonstrates it as a promising candidate for transient energy storage applications. The Gel/SWCNT nanocomposite may offer a new route for the synthesis of eco-friendly, biodegradable, and transient devices.

10.
Heliyon ; 7(5): e06983, 2021 May.
Article in English | MEDLINE | ID: mdl-34027183

ABSTRACT

Graphene-based polymer composites are gaining interest as a modish class of substance that holds promising angles on diverse applications. In this work, Graphene Oxide (GO) based Polyvinyl Alcohol (PVA) nanocomposites (PVA-GO) have been prepared by employing a facile solution casting method. Low concentrations of GO nanofiller (0.25%, 0.50%, 0.75%, and 1.0%) were used and the result of the use of them over the distinct substantial characteristics of the nanocomposites was evaluated. The different features of the as-synthesized nanocomposites such as optical, structural, chemical, and thermal properties were identified by UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), and Thermo-gravimetric analysis (TGA), respectively. From the structural analysis of the crystallinity of the nanocomposite it is evident that a reduction in crystallinity caused by the amalgamation of the GO nanofiller. FTIR study shows improved interaction between the GO nanofiller and PVA matrix. The incorporation of GO was found to reduce the optical band gap of the nanocomposite both for the direct and indirect transition. The Urbach energy of the nanocomposite increases with the increase of the GO concentration suggests the formation of localized states causing a reduction in the optical band gap. PVA-GO nanocomposites with improved and tunable physical properties synthesized from a simple and economic route may pave a new horizon for polymer-based optoelectronic devices.

11.
Heliyon ; 6(10): e05292, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33102876

ABSTRACT

In this work, flexible plasticized starch/graphene oxide (PS/GO) nanocomposites are synthesized by a simple and economic solution cast technique. The structural and surface morphological study of the nanocomposite demonstrates an increased degree of interaction between PS and GO which in turn improves the mechanical strength and thermal stability of the nanocomposite. The influence of GO loading on the capacitive performance of the nanocomposite was evaluated by studying the electrochemical properties. The PS/GO nanocomposite showed an improved capacitive behavior with a specific capacitance of 115 F/g compared to that of pure starch (2.20 F/g) and GO (10.42 F/g) at a current density 0.1 mA/cm2. The electrochemical impedance analysis indicates that the incorporation of GO enhances the conductivity of the nanocomposite in the charge transfer resistance at the electrode/electrolyte interface due to the incorporation of GO. The large surface areas provided by the GO sheets allow faster transport of charge carriers into the electrode and improve the electrochemical properties of the PS/GO nanocomposite. Considering the simplicity and effectiveness of the synthesis proses, the result indicates that the PS/GO nanocomposite could be a potential alternative for bio-friendly, flexible energy-storage applications.

SELECTION OF CITATIONS
SEARCH DETAIL