Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Accid Anal Prev ; 188: 107091, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37150130

ABSTRACT

The severity of right-turn crashes (or left-turn crashes for the roads in the US) at signalised intersections tends to be high because of the relatively high conflicting speeds and angle of impact. However, right-turn crash injury severity at signalised intersections was not sufficiently studied. In particular, the effects of signal control strategies on crash injury severity are not known. This study developed crash injury severity models for right-turn crashes at signalised intersections with a novel approach of linking crashes with signal strategies which enabled assessing the effects of signal strategies on crash injury severity. The study provided a comprehensive understanding of the impacts of signal strategies, intersection geometry and traffic factors on crash injury severity of right-turn crashes at signalised intersections. Crash injury severity models were estimated with crash data from 221 signalised intersections in Queensland from 2012 to 2018. To address the hierarchical structure of crash data, two-level hierarchical Multinomial Logit models were applied, hypothesising that the first level includes individual crash characteristics while the second level includes intersection characteristics. The applied hierarchical model accounts for the correlation among crashes within intersections. Results showed that crashes during Lagging right-turn and Diamond overlap turns are likely to be more severe than other signal strategies at intersections, with the Lagging right-turn signal being the most hazardous. The results also illustrate that the probability of severe injuries increases with the number of conflicting lanes, whereas the corresponding probability decreases with the occupancy of the conflicting lane.


Subject(s)
Accidents, Traffic , Wounds and Injuries , Humans , Accidents, Traffic/prevention & control , Logistic Models , Queensland , Wounds and Injuries/epidemiology
2.
Accid Anal Prev ; 184: 106993, 2023 May.
Article in English | MEDLINE | ID: mdl-36796218

ABSTRACT

Crash risk models relying on total crash counts are limited in their ability to extract meaningful insights regarding the context of crashes and to identify effective remedial measures. In addition to the typical classification of collisions noted in the literature (e.g., angle, head-on and rear-end), crashes can also be categorised according to vehicle movement configurations (Definitions for Coding Accidents or DCA codes in Australia). This classification presents an opportunity to extract useful insights into road traffic collision causes and contributing factors that are highly contextual. With this aim, this study develops crash-type models by DCA crash movement, with a focus on right-turn crashes (equivalent to left-turn crashes for right-hand traffic) at signalised intersections using a novel approach for linking crashes with signal control strategies. The modelling approach with contextual data enables quantification of the effect of signal control strategies on right-turn crashes, offering potentially unique and novel insights into right-turn crash causes and contributing factors. Crash-type models are estimated with the crash data of 218 signalised intersections in Queensland from 2012 to 2018. Multilevel (Hierarchical) Multinomial Logit Models with random intercepts are employed to capture the hierarchical influence of factors on crashes and unobserved heterogeneities. These models capture upper-level influences on crashes from intersection characteristics and lower-level influences from individual crash characteristics. The models specified in this way account for the correlation among crashes within intersections and influences on crashes across spatial scales. The model results reveal that the probabilities of the opposite approach crash type are significantly higher than the same direction and adjacent approach crash types for all right-turn signal control strategies at intersections except the split approach, for which the opposite is true. The results also suggest that the number of right-turning lanes and occupancy in conflicting lanes are positively associated with the likelihood of crashes for the same direction crash type.


Subject(s)
Accidents, Traffic , Humans , Accidents, Traffic/prevention & control , Logistic Models , Australia , Queensland
SELECTION OF CITATIONS
SEARCH DETAIL
...