Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Sci Rep ; 14(1): 980, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38225361

ABSTRACT

The American chestnut (Castanea dentata, 2n = 2x = 24), once known as the "King of the Appalachian Forest", was decimated by chestnut blight during the first half of the twentieth century by an invasive fungus (Cryphonectria parasitica). The Chinese chestnut (C. mollissima, 2n = 2x = 24), in contrast to American chestnut, is resistant to this blight. Efforts are being made to transfer this resistance to American chestnut through backcross breeding and genetic engineering. Both chestnut genomes have been genetically mapped and recently sequenced to facilitate gene discovery efforts aimed at assisting molecular breeding and genetic engineering. To complement and extend this genomic work, we analyzed the distribution and organization of their ribosomal DNAs (35S and 5S rDNA), and the chromatin composition of the nucleolus organizing region (NOR)-associated satellites. Using fluorescent in situ hybridization (FISH), we have identified two 35S (one major and one minor) and one 5S rDNA sites. The major 35S rDNA sites are terminal and sub-terminal in American and Chinese chestnuts, respectively, originating at the end of the short arm of the chromosome, extending through the secondary constriction and into the satellites. An additional 5S locus was identified in certain Chinese chestnut accessions, and it was linked distally to the major 35S site. The NOR-associated satellite in Chinese chestnut was found to comprise a proximal region packed with 35S rDNA and a distinct distal heterochromatic region. In contrast, the American chestnut satellite was relatively small and devoid of the distal heterochromatic region.


Subject(s)
Chromatin , Plant Breeding , Chromatin/genetics , DNA, Ribosomal/genetics , In Situ Hybridization, Fluorescence , Genomics
3.
G3 (Bethesda) ; 13(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37708394

ABSTRACT

Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome-environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species.


Subject(s)
Quercus , Quercus/genetics , Phylogeny , Haplotypes , Genomics , Chromosomes
4.
Sci Rep ; 10(1): 13174, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764541

ABSTRACT

The African baobab (Adansonia digitata L.), also referred to as the "Tree of Life", is a majestic, long-lived and multipurpose tree of sub-Saharan Africa. Internationally, a growing demand for baobab products in the food, pharmaceutical and cosmetics industries has been observed. Considering this, there is a need for scientific information on the genetics and breeding of A. digitata, including cytogenetics, genetic diversity and reproductive biology. The objectives of our cytogenetic research were to determine the genome size, chromosome number, and organization of ribosomal DNA (45S and 5SrDNA) of A. digitata. Flow cytometry analysis revealed a 2C-DNA value of 3.8 ± 0.6 pg (1Cx monoploid genome size 919.1 ± 62.9 Mbp). Using our improved chromosome preparation technique, we were able to unequivocally count the chromosomes resulting in 2n = 4x = 168, a revised chromosome number for A. digitata. Fluorescent in situ hybridization (FISH) analysis revealed two massively large variants of 45S rDNA and their corresponding nucleolus organizer regions (NOR). The NOR variants were about two to four times larger than the main body of their respective chromosomes. To our knowledge, this is the first report of this phenomenon in a plant species. Furthermore, we found that FISH analysis using the Arabidopsis-type telomere repeat sequence probe clarified and confirmed the new chromosome number and characterized the 45S rDNA structural organization.


Subject(s)
Adansonia/cytology , Adansonia/genetics , Chromosomes, Plant/genetics , DNA, Ribosomal/genetics , In Situ Hybridization, Fluorescence , Repetitive Sequences, Nucleic Acid , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL