Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37895919

ABSTRACT

A key problem in colorectal cancer (CRC) is the development of resistance to current therapies due to the presence of cancer stem cells (CSC), which leads to poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a protein that activates apoptosis in cancer cells through union with TRAIL death receptors. Cell therapies as delivery systems can produce soluble TRAIL (sTRAIL) and full-length TRAIL (flTRAIL), showing a high capacity to produce apoptosis in vitro and in vivo assays. However, the apoptotic activity of TRAIL as monotherapy had limitations, so it is important to explore other ways to enhance susceptibility to TRAIL. This study evaluated the cytotoxic and proapoptotic activity of soluble TRAIL overexpressed by mesenchymal stem cells (MSC) in an oxaliplatin-resistant CRC cell line. Bone marrow-MSC were lentiviral transduced for soluble TRAIL expression. DR5 death receptor expression was determined in Caco-2 and CMT-93 CRC cell lines. Sensitivity to first-line chemotherapies and recombinant TRAIL was evaluated by half-maximal inhibitory concentrations. Cytotoxic and proapoptotic activity of soluble TRAIL-MSC alone and combined with chemotherapy pre-treatment was evaluated using co-cultures. Caco-2 and CMT-93 cell lines expressed 59.08 ± 5.071 and 51.65 ± 11.99 of DR5 receptor and had IC50 of 534.15 ng/mL and 581.34 ng/mL for recombinant murine TRAIL (rmTRAIL), respectively. This finding was classified as moderate resistance to TRAIL. The Caco-2 cell line showed resistance to oxaliplatin and irinotecan. MSC successfully overexpressed soluble TRAIL and induced cancer cell death at a 1:6 ratio in co-culture. Oxaliplatin pre-treatment in the Caco-2 cell line increased the cell death percentage (50%) and apoptosis by sTRAIL. This finding was statistically different from the negative control (p < 0.05), and activity was even higher with the oxaliplatin-flTRAIL combination. Thus, oxaliplatin increases apoptotic activity induced by soluble TRAIL in a chemoresistant CRC cell line.

2.
Int J Mol Sci ; 24(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175871

ABSTRACT

Cancer stem cells (CSCs) are a small subpopulation of cells within tumors with properties, such as self-renewal, differentiation, and tumorigenicity. CSCs have been proposed as a plausible therapeutic target as they are responsible for tumor recurrence, metastasis, and conventional therapy resistance. Selectively targeting CSCs is a promising strategy to eliminate the propagation of tumor cells and impair overall tumor development. Recent research shows that several immune cells play a crucial role in regulating tumor cell proliferation by regulating different CSC maintenance or proliferation pathways. There have been great advances in cellular immunotherapy using T cells, natural killer (NK) cells, macrophages, or stem cells for the selective targeting of tumor cells or CSCs in colorectal cancer (CRC). This review summarizes the CRC molecular profiles that may benefit from said therapy and the main vehicles used in cell therapy against CSCs. We also discuss the challenges, limitations, and advantages of combining conventional and/or current targeted treatments in the late stages of CRC.


Subject(s)
Colonic Neoplasms , Humans , Colonic Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplasm Recurrence, Local/pathology , Immunotherapy
3.
Technol Cancer Res Treat ; 22: 15330338231163677, 2023.
Article in English | MEDLINE | ID: mdl-36938618

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common liver cancer. It is highly lethal and has high recurrence. Death among HCC patients occur mainly due to tumor progression, recurrence, metastasis, and chemoresistance. Cancer stem cells (CSCs) are cell subpopulations within the tumor that promote invasion, recurrence, metastasis, and drug resistance. Hepatic stellate cells (HSCs) are important components of the tumor microenvironment (TME) responsible for primary secretory ECM proteins during liver injury and inflammation. These cells promote fibrogenesis, infiltrate the tumor stroma, and contribute to HCC development. Interactions between HSC and CSC and their microenvironment help promote carcinogenesis through different mechanisms. This review summarizes the roles of CSCs and HSCs in establishing the TME in primary liver tumors and describes their involvement in HCC chemoresistance.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Cell Line, Tumor , Cell Movement , Neoplastic Stem Cells/metabolism , Tumor Microenvironment
4.
Biomedicines ; 11(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36831131

ABSTRACT

BACKGROUND: Cancer treatment has many side effects; therefore, more efficient treatments are needed. Mesenchymal stem cells (MSC) have immunoregulatory properties, tumor site migration and can be genetically modified. Some proteins, such as soluble TRAIL (sTRAIL) and interleukin-12 (IL-12), have shown antitumoral potential, thus its combination in solid tumors could increase their activity. MATERIALS AND METHODS: Lentiviral transduction of bone marrow MSC with green fluorescent protein (GFP) and transgenes (sTRAIL and IL-12) was confirmed by fluorescence microscopy and Western blot. Soluble TRAIL levels were quantified by ELISA. Lymphoma L5178Y cells express a reporter gene (GFP/mCherry), and TRAIL receptor (DR5). RESULTS: An in vivo model showed that combined treatment with MSC expressing sTRAIL+IL-12 or IL-12 alone significantly reduced tumor volume and increased survival in BALB/c mice (p < 0.05) with only one application. However, at the histological level, only MSC expressing IL-12 reduced tumor cell infiltration significantly in the right gastrocnemius compared with the control group (p < 0.05). It presented less tissue dysplasia confirmed by fluorescence and hematoxylin-eosin dye; nevertheless, treatment not inhibited hepatic metastasis. CONCLUSIONS: MSC expressing IL-12, is or combination with BM-MSC expressing sTRAIL represents an antitumor strategy for lymphoma tumors since they increase survival and reduce tumor development. However, the combination did not show significative additive effect. The localized application did not inhibit metastasis but reduced morphological alterations of tissue associated with liver metastasis.

5.
Mol Med Rep ; 25(6)2022 06.
Article in English | MEDLINE | ID: mdl-35485288

ABSTRACT

As the understanding of cancer grows, new therapies have been proposed to improve the well-known limitations of current therapies, whose efficiency relies mostly on early detection, surgery and chemotherapy. Mesenchymal stem cells (MSCs) have been introduced as a promissory and effective therapy. This fact is due to several useful features of MSCs, such as their accessibility and easy culture and expansion in vitro, and their remarkable ability for 'homing' towards tumors, allowing MSCs to exert their anticancer effects directly into tumors. Additionally, MSCs offer the practicability of being genetically engineered to carry anticancer genes, increasing their specificity and efficacy for fighting tumors. In the present study, the antitumoral efficacy and post-implant survival of mice bearing lymphomas implanted intratumorally were determined using mouse bone marrow-derived (BM)-MSCs transduced with soluble TRAIL (sTRAIL), full length TRAIL (flTRAIL), or interferon ß (IFNß), naïve BM-MSCs, or combinations of these. The percentage of surviving mice was determined once all not-implanted mice succumbed. It was found that the percentage of surviving mice implanted with the combination of MSCs-sTRAIL and MSCs-IFN-ß was 62.5%. Lymphoma model achieved 100% fatality in the non-treated group by day 41. On the other hand, the percentage of surviving mice implanted with MSCs-sTRAIL was 50% and with MSCs-INFß 25%. All the aforementioned differences were statistically significant (P<0.05). In conclusion, all implants exhibited tumor size reduction, growth delay, or apparent tumor clearance. MSCs proved to be effective anti-lymphoma agents; additionally, the combination of soluble TRAIL and IFN-ß resulted in the most effective antitumor and life enlarging treatment, showing an additive antitumoral effect compared with individual treatments.


Subject(s)
Lymphoma , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Hypertrophy , Interferon-beta/genetics , Lymphoma/genetics , Lymphoma/therapy , Mice
6.
Pharmaceutics ; 13(1)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466892

ABSTRACT

Metastasis is the process of dissemination of a tumor, whereby cells from the primary site dislodge and find their way to other tissues where secondary tumors establish. Metastasis is the primary cause of death related to cancer. This process warrants changes in original tumoral cells and their microenvironment to establish a metastatic niche. Traditionally, cancer therapy has focused on metastasis prevention by systematic treatments or direct surgical re-sectioning. However, metastasis can still occur. More recently, new therapies direct their attention to targeting cancer stem cells. As they propose, these cells could be the orchestrators of the metastatic niche. In this review, we describe conventional and novel developments in cancer therapeutics for liver and lung metastasis. We further discuss the resistance mechanisms of targeted therapy, the advantages, and disadvantages of diverse treatment approaches, and future novel strategies to enhance cancer prognosis.

7.
Front Oncol ; 10: 1511, 2020.
Article in English | MEDLINE | ID: mdl-32974184

ABSTRACT

Colorectal carcinoma (CRC) is a leading cause of cancer mortality. Tumorigenesis is a dynamic process wherein cancer stem cells (CSCs) and their microenvironment promote initiation, progression, and metastasis. Metastatic colonization is an inefficient process that is very complex and is poorly understood; however, in most cases, metastatic disease is not curable, and resistance mechanisms tend to develop against conventional treatments. An understanding of the underlying mechanisms and factors that contribute to the development of metastasis in CRC can aid in the search for specific therapeutic targets for improving standard treatments. In this review, we summarize current knowledge regarding tumor biology and the use of stroma cells as prognostic factors and inflammatory inducers associated with the use of tumor microenvironments as a promoter of cancer metastasis. Moreover, we look into the importance of CSC, pericytes, and circulating tumor cells as mechanisms that lead to liver metastasis, and we also focus on the cellular and molecular pathways that modulate and regulate epithelial-mesenchymal transition. Finally, we discuss a novel therapeutic target that can potentially eliminate CSCs as a CRC treatment.

8.
ASAIO J ; 63(3): 333-341, 2017.
Article in English | MEDLINE | ID: mdl-28459744

ABSTRACT

Development of tissue-engineered hearts for treatment of myocardial infarction or biologic pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. To further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histologic observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHMs. Improvements in electrophysiology within the AHM were noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHMs. Genes expressing key electrophysiologic and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHMs capable of replacing damaged heart tissue in either a contractile or electrophysiologic capacity. Optimized AHMs can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis.


Subject(s)
Heart, Artificial , Myocytes, Cardiac/cytology , Animals , Bioreactors , Electric Stimulation , Gene Expression , Heart Failure/therapy , Myocardial Contraction , Myocytes, Cardiac/physiology , Rats , Rats, Sprague-Dawley
9.
Ann Hepatol ; 7(2): 130-5, 2008.
Article in English | MEDLINE | ID: mdl-18626430

ABSTRACT

UNLABELLED: We assessed the anti-fibrotic effects of methanolic black bean extract antioxidants in a carbon tetrachloride (CCl4) liver injury model in rats. Experimentally intoxicated animals received CCl4 for eight weeks, the reference and test groups received daily intragastric quercetin or daily intragastric black bean extract. Liver fibrosis was assessed and quantified using morphometric analysis. Expression of fibrosis related genes was measured by real time RT-PCR. Qualitative and quantitative histological analysis showed that administration of 70 mg/kg b.w. of black bean extract reduced hepatic fibrosis index by 18% compared to positive controls (P 0.006), as a result of a decrease in type I (44.3% less, P 0.03) and type IV (68.9% less, P 0.049) collagen gene expression compared to CCl4-injured and Quercetin treated rats. In conclusion, we provide evidence that this methanol black bean extract ameliorates liver fibrosis and types I and IV collagen gene expression, in the animal model used. PRACTICAL APPLICATIONS: The compounds contained in this black bean extract exhibited strong antifibrotic effects in the CCl4 chronic liver injury model used; considering that this compounds are contained in a leguminous that has been used in human diet for a long time, their toxic potential should be very low, and this characteristic should favor their potential use in some other chronic or degenerative states that include an increase in inflammation and oxidative burst in their pathogenesis. Another possible application of this kind of extract could be its use as an antimicrobial or even antiparasitic therapeutic agent, although it is purely speculative.


Subject(s)
Fabaceae , Liver Cirrhosis/drug therapy , Plant Extracts/pharmacology , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Carbon Tetrachloride , Collagen Type I/metabolism , Collagen Type IV/metabolism , Disease Models, Animal , Flavonoids/pharmacology , Flavonoids/therapeutic use , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Male , Phytotherapy , Plant Extracts/therapeutic use , Rats , Rats, Wistar
10.
J Negat Results Biomed ; 6: 1, 2007 Jan 18.
Article in English | MEDLINE | ID: mdl-17233913

ABSTRACT

BACKGROUND: We developed a study using low dose radioactive iodine creating an animal model of transient elevation of thyroid stimulating hormone (TSH). Male derived bone marrow cells were transplanted to asses their effect on thyroid function and their capability to repair the thyroid parenchyma. RESULTS: At 40 an 80 days after I131 treatment, the study groups TSH and T4 serum values both increased and decreased significantly respectively compared to the negative control group. Eight weeks after cell transplantation, neither TSH nor T4 showed a significant difference in any group. The mean number of SRY gene copies found in group I (Left Intracardiac Transplant) was 523.3 and those in group II (Intrathyroid Transplant) were only 73. Group III (No Transplant) and IV had no copies. Group I presented a partial restore of the histological pattern of rat thyroid with approximately 20%-30% of normal-sized follicles. Group II did not show any histological differences compared to group III (Positive control). CONCLUSION: Both a significant increase of TSH and decrease of T4 can be induced as early as day 40 after a low dose of I131 in rats. Restore of normal thyroid function can be spontaneously achieved after using a low dose RAI in a rat model. The use of BM derived cells did not affect the re-establishment of thyroid function and might help restore the normal architecture after treatment with RAI.


Subject(s)
Bone Marrow Transplantation , Iodine Radioisotopes/toxicity , Thyroid Function Tests , Thyrotropin/blood , Thyroxine/blood , Animals , Female , Polymerase Chain Reaction , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...