ABSTRACT
Inventories of the gene content of the last common ancestor (LCA), i.e., the cenancestor, include sequences that may have undergone horizontal transfer events, as well as sequences that have originated in different pre-cenancestral epochs. However, the universal distribution of highly conserved genes involved in RNA metabolism provide insights into early stages of cell evolution during which RNA played a much more conspicuous biological role, and is consistent with the hypothesis that extant living systems were preceded by an RNA/protein world. Insights into the traits of primitive entities from which the LCA evolved may be derived from the analysis of paralogous gene families, including those formed by sequences that resulted from internal elongation events. Three major types of paralogous gene families can be recognized. The importance of this grouping for understanding the traits of early cells is discussed.
Subject(s)
Evolution, Molecular , Genomics , Multigene Family , Origin of Life , RNA/genetics , RNA/metabolismABSTRACT
The concept of a minimal cell is discussed from the viewpoint of comparative genomics. Analysis of published DNA content values determined for 641 different archaeal and bacterial species by pulsed field gel electrophoresis has lead to a more precise definition of the genome size ranges of free-living and host-associated organisms. DNA content is not an indicator of phylogenetic position. However, the smallest genomes in our sample do not have a random distribution in rRNA-based evolutionary trees, and are found mostly in (a) the basal branches of the tree where thermophiles are located; and (b) in late clades, such as those of Gram positive bacteria. While the smallest-known genome size for an endosymbiont is only 450 kb, no free-living prokaryote has been described to have genomes < 1450 kb. Estimates of the size of minimal gene complement can provide important insights in the primary biological functions required for a sustainable, reproducing cell nowadays and throughout evolutionary times, but definitions of the minimum cell is dependent on specific environments.