Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Org Biomol Chem ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171544

ABSTRACT

A synthetic strategy for obtaining a new series of 1,5-disubstituted tetrazole-benzofuran hybrid systems via a one-pot five-component reaction is described. This process involves a Ugi-azide multicomponent reaction coupled to an intramolecular cyclization catalyzed by Pd/Cu, resulting in low to moderate yields from 21 to 67%. This protocol allowed the synthesis of highly substituted benzofurans at the 2-position through an operationally simple process under mild reaction conditions and with high bond forming efficiency due to the formation of six new bonds (two C-C, two C-N, one N-N, and one C-O). Besides, to evaluate the antifungal activity of 1,5-disubstituted tetrazole-benzofurans 9a-n, in vitro studies against Mucor lusitanicus were performed, finding that compound 9b exhibits bioactivity comparable to the commercial antifungal drug Amphotericin B. These results suggest potential for use in controlling mucormycosis infections in animal models, highlighting the importance of these findings given the limited antifungal drug options and high mortality rates associated with this infection.

2.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38004428

ABSTRACT

An Ugi-Zhu three-component reaction (UZ-3CR) coupled in a one-pot manner to a cascade process (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration) was performed to synthesize a series of pyrrolo[3,4-b]pyridin-5-ones in 20% to 92% overall yields using ytterbium triflate as a catalyst, toluene as a solvent, and microwaves as a heat source. The synthesized molecules were evaluated in vitro against breast cancer cell lines MDA-MB-231 and MCF-7, finding that compound 1f, at a concentration of 6.25 µM, exhibited a potential cytotoxic effect. Then, to understand the interactions between synthesized compounds and the main proteins related to the cancer cell lines, docking studies were performed on the serine/threonine kinase 1 (AKT1) and Orexetine type 2 receptor (Ox2R), finding moderate to strong binding energies, which matched accurately with the in vitro results. Additionally, molecular dynamics were performed between proteins related to the studied cell lines and the three best ligands.

3.
RSC Adv ; 13(39): 27174-27179, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37701278

ABSTRACT

In the present work, nanocrystalline Zn-MOF-74 is shown to be a heterogeneous catalyst for the acid-catalyzed ring-opening alcoholysis of cyclohexene oxide. The results corroborated that accessible open metal sites within the material are critical conditions (Zn(ii) Lewis acid sites) for this reaction. Zn-MOF-74 was tested at three different temperatures (30, 40, and 50 °C) for the alcoholysis reaction. Furthermore, the cyclohexene oxide conversion was 94% in less than two days. A comparison of the catalytic activity with different crystal sizes of Zn-MOF-74 and the homogenous phase, zinc acetate, was conducted. Zn-MOF-74 exhibited excellent catalytic cyclability for three cycles without losing its activity. The material showed chemical stability by retaining its crystalline structure after the reaction and cyclability process.

4.
Chem Commun (Camb) ; 59(69): 10343-10359, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37563983

ABSTRACT

Developing robust multifunctional metal-organic frameworks (MOFs) is the key to advancing the further deployment of MOFs into relevant applications. Since the first report of MFM-300(Sc) (MFM = Manchester Framework Material, formerly known as NOTT-400), the development of applications of this robust microporous MOF has only grown. In this review, a summary of the applications of MFM-300(Sc), as well as some emerging advanced applications, have been discussed. The adsorption properties of MFM-300(Sc) are presented systematically. Particularly, this contribution is focused on acid and corrosive gas adsorption. In addition, recent applications for catalysis based on the outstanding hemilabile Sc-O bond character are highlighted. Finally, some new research areas are introduced, such as host-guest chemistry and biomedical applications. This highlight aims to showcase the recent advances and the potential for developing new applications of this promising material.

5.
RSC Adv ; 13(24): 16091-16125, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37260715

ABSTRACT

Classical multicomponent reactions (MCRs) are domino-type one-pot processes in which three or more different reactants are combined sequentially in the same reactor to synthesize compounds containing all or almost all atoms coming from the reactants. Besides, pseudo-MCRs are also domino-type one-pot processes involving combinations of at least three reactants but in which at least one of them takes part in two or more reaction steps. In consequence, the products synthesized through pseudo-MCRs contain also all or almost all atoms but coming from two or more identical reactants. Thus, pseudo-MCRs differ from classical MCRs because the first ones appear to involve an assembly of a higher number of different components than those that are being truly assembled. However, pseudo-MCRs are also useful synthetic tools to generate libraries of complex compounds in few experimental steps, and although the repeated reactants may make them appear less diverse than classical MCRs, this can be offset by the higher number of reactants that can participate in this type of reaction. Overall, there are two types of pseudo-MCRs. The first are those in which the duplicated reagents participate in different steps of the corresponding reaction mechanism. The second kind of pseudo-MCRs are those in which one or more components react simultaneously with a main reagent containing two or more identical functional groups. These latter are known as repetitive pseudo-MCRs. Thus, the aim of the present review is to cover for the first time selected works mainly published in the last two decades about pseudo-MCRs and their repetitive versions toward the synthesis of novel, complex, and highly symmetrical molecules, often including their interesting applications in various fields of science and technology. The manuscript has been categorized considering the number of reagents participating in the corresponding pseudo-MCRs, aiming to give readers novel insights for their future investigations.

6.
Molecules ; 28(10)2023 May 14.
Article in English | MEDLINE | ID: mdl-37241828

ABSTRACT

A diversity-oriented synthesis (DOS) of two new polyheterocyclic compounds was performed via an Ugi-Zhu/cascade (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration)/click strategy, both step-by-step to optimize all involved experimental stages, and in one pot manner to evaluate the scope and sustainability of this polyheterocyclic-focused synthetic strategy. In both ways, the yields were excellent, considering the high number of bonds formed with release of only one carbon dioxide and two molecules of water. The Ugi-Zhu reaction was carried out using the 4-formylbenzonitrile as orthogonal reagent, where the formyl group was first transformed into the pyrrolo[3,4-b]pyridin-5-one core, and then the remaining nitrile group was further converted into two different nitrogen-containing polyheterocycles, both via click-type cycloadditions. The first one used sodium azide to obtain the corresponding 5-substituted-1H-tetrazolyl-pyrrolo[3,4-b]pyridin-5-one, and the second one with dicyandiamide to synthesize the 2,4-diamino-1,3,5-triazine-pyrrolo[3,4-b]pyridin-5-one. Both synthesized compounds may be used for further in vitro and in silico studies because they contain more than two heterocyclic moieties of high interest in medicinal chemistry, as well as in optics due to their high π-conjugation.

7.
RSC Med Chem ; 14(1): 154-165, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36760742

ABSTRACT

An Ugi-Zhu three-component reaction (UZ-3CR) coupled in one pot manner to a cascade process (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration) was performed to synthesize a series of bis-furyl-pyrrolo[3,4-b]pyridin-5-ones in 45 to 82% overall yields using ytterbium triflate as a catalyst, toluene as a solvent, and microwaves as a heat source. The synthesized molecules were evaluated in vitro against human SARS-CoV-2 through a time-of-addition approach, finding that compound 1e, at a concentration of 10.0 µM, exhibited a significant reduction at the initial infection stages, thus showing prophylactic potential. On the other hand, it was found that compound 1d, at the same concentration, was significantly active when applied post-infection, thus exhibiting a therapeutic profile. Moreover, compound 1f showed both, prophylactic and therapeutic activity. Then, to understand interactions between synthesized compounds and the main proteins related to the virus, docking studies were performed on spike-glycoprotein, main-protease, and Nsp3 protein, finding moderate to strong binding energies, matching accurately with the in vitro results. Additionally, a pharmacophore model was computed behind further rational drug design.

8.
Molecules ; 26(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34684686

ABSTRACT

A high-order multicomponent reaction involving a six-component reaction to obtain the novel linked 1,5-disubstituted tetrazole-1,2,3-triazole hybrids in low to moderate yield is described. This one-pot reaction is carried out under a cascade process consisting of three sequential reactions: Ugi-azide, bimolecular nucleophilic substitution (SN2), and copper-catalyzed alkyne-azide reaction (CuAAC), with high atom and step-economy due the formation of six new bonds (one C-C, four C-N, and one N-N). Thus, the protocol developed offers operational simplicity, mild reaction conditions, and structural diversity. Finally, to evaluate the antitumoral potential of the synthetized molecules, a proliferation study was performed in the breast cancer (BC) derived cell line MCF-7. The hybrid compounds showed several degrees of cell proliferation inhibition with a remarkable effect in those compounds with cyclohexane and halogens in their structures. These compounds represent potential drug candidates for breast cancer treatment. However, additionally assays are needed to elucidate their complete effect over the cellular hallmarks of cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Tetrazoles/chemical synthesis , Triazoles/chemical synthesis , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Female , Humans , MCF-7 Cells , Tetrazoles/pharmacology , Triazoles/pharmacology
9.
Molecules ; 26(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201422

ABSTRACT

A possible inhibitor of proteases, which contains an indole core and an aromatic polar acetylene, was designed and synthesized. This indole derivative has a molecular architecture kindred to biologically relevant species and was obtained through five synthetic steps with an overall yield of 37% from the 2,2'-(phenylazanediyl)di(ethan-1-ol). The indole derivative was evaluated through docking assays using the main protease (SARS-CoV-2-Mpro) as a molecular target, which plays a key role in the replication process of this virus. Additionally, the indole derivative was evaluated as an inhibitor of the enzyme kallikrein 5 (KLK5), which is a serine protease that can be considered as an anticancer drug target.


Subject(s)
Acetylene/chemistry , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Indoles/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , SARS-CoV-2/enzymology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Kallikreins/antagonists & inhibitors , Models, Molecular , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
10.
Materials (Basel) ; 13(8)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295240

ABSTRACT

The structure transformation of Mg-CUK-1 due to the confinement of H2O molecules was investigated. Powder X-ray diffraction (PXRD) patterns were collected at different H2O loadings and the cell parameters of the H2O-loaded Mg-CUK-1 material were determined by the Le Bail strategy refinements. A bottleneck effect was observed when one hydrogen-bonded H2O molecule per unit cell (18% relative humidity (RH)) was confined within Mg-CUK-1, confirming the increase in the CO2 capture for Mg-CUK-1.

11.
Polymers (Basel) ; 12(1)2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31968552

ABSTRACT

Excellent quadratic non-linear optical (ONL-2) properties of the poly(2,5-bis(but-2-ynyloxy) benzoate, containing a polar diacetylene as a chromophore, were found. According with the Maker fringes method, oriented polymer films showing an order parameter of ∼0.23 can display outstanding and stable Second Harmonic Generation (SHG) effects under off-resonant conditions (SHG-532 nm). Also, the macroscopic non-linear optical (NLO)-coefficients were evaluated under the rod-like molecular approximation, obtaining: χzzz(2) and χzxx(2) in the order of 280 ± 10 and 100 ± 10 pm V-1, respectively. The mechanical and chemical properties, in addition to the large ONL-2 coefficients exhibited by this polymer, make it a promising organic material in the development of optoelectronic/photonic devices.

12.
Front Chem ; 7: 546, 2019.
Article in English | MEDLINE | ID: mdl-31448260

ABSTRACT

6-Triazolylmethyl-pyrrolo[3,4-b]pyridin-5-one tris-heterocycles were synthesized in 43-57% overall yields. The two-stage synthesis involved a cascade process (Ugi-3CR/aza Diels-Alder/N-acylation/aromatization) followed by a copper-assisted alkyne-azide [3+2] cycloaddition (CuAAC). This efficient and convergent strategy proceeded via complex terminal alkynes functionalized with a fused bis-heterocycle at the α-position. The final products are ideal candidates for SAR studies as they possess two privileged scaffolds in medicinal chemistry: 4-substituted or 1,4-substituted 1H-1,2,3-triazoles and pyrrolo[3,4-b]pyridin-5-ones.

13.
Molecules ; 24(14)2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31336585

ABSTRACT

A series of 12 polysubstituted pyrrolo[3,4-b]pyridin-5-ones were synthesized via a one-pot cascade process (Ugi-3CR/aza Diels-Alder/N-acylation/decarboxylation/dehydration) and studied in vitro using human epithelial cervical carcinoma SiHa, HeLa, and CaSki cell line cultures. Three compounds of the series exhibited significative cytotoxicity against the three cell lines, with HeLa being the most sensitive one. Then, based on these results, in silico studies by docking techniques were performed using Paclitaxel as a reference and αß-tubulin as the selected biological target. Worth highlighting is that strong hydrophobic interactions were observed between the three active molecules and the reference drug Paclitaxel, to the αß-tubulin. In consequence, it was determined that hydrophobic-aromatic moieties of bioactive compounds and Paclitaxel play a key role in making stronger interactions to the ligand-target complex. A quantitative structure activity relationship (QSAR) study revealed that the six membered rings are the most significant molecular frameworks, being present in all proposed models for the in vitro-studied cell lines. Finally, also from the docking interpretation, a ligand-based pharmacophore model is proposed in order to find further potential polyheterocyclic candidates to bind stronger to the αß-tubulin.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Chemistry Techniques, Synthetic , Quantitative Structure-Activity Relationship , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Hydrophobic and Hydrophilic Interactions , Lysine/analogs & derivatives , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure
14.
Molecules ; 23(8)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110915

ABSTRACT

A series of eight new 5-aryl-benzo[f][1,7]naphthyridines were synthesized in 17 to 64% overall yields via an improved MW-assisted cascade-like one pot process (Ugi⁻three component reaction/intramolecular aza-Diels-Alder cycloaddition) coupled to an aromatization process from tri-functional dienophile-containing ester-anilines, substituted benzaldehydes and the chain-ring tautomerizable 2-isocyano-1-morpholino-3-phenylpropan-1-one as starting reagents, under mild conditions. The doubly activated dienophile and the aza-diene functionalities of the eight new Ugi-adducts were exploited to perform an in situ aza-Diels-Alder cycloaddition/aromatization (dehydration/oxidation) process, toward the complex polysubstituted 5-aryl-polyheterocycles, which could be taken as starting point for further SAR studies because the benzo[f][1,7]naphthyridine is the core of various bioactive products. It is relevant to emphasize that the synthesis or isolation of benzo[f][1,7]naphthyridines containing a substituted aromatic ring in the C-5 position, has not been published before.


Subject(s)
Cyclization , Cycloaddition Reaction , Naphthyridines/chemical synthesis , Combinatorial Chemistry Techniques , Microwaves , Molecular Structure , Naphthyridines/chemistry
15.
Molecules ; 23(4)2018 Mar 27.
Article in English | MEDLINE | ID: mdl-29584639

ABSTRACT

We describe the one-pot synthesis of twenty polyheterocyclic pyrrolo[3,4-b]pyridin-5-ones via a cascade process (Ugi-3CR/aza Diels-Alder/N-acylation/aromatization) in 20 to 95% overall yields, as well as four pharmacologically promising analogues via an improved cascade process (Ugi-3CR/aza Diels-Alder/N-acylation/aromatization/SN2): two piperazine-linked pyrrolo[3,4-b]pyridin-5-ones in 33 and 34%, and a couple of Falipamil aza-analogues in 30 and 35% overall yields. It is worth highlighting the good substrate scope found, because final products are furnished with alkyl, aryl, and heterocyclic substituents. The use of chain-ring tautomerizable isocyanides (as key reagents for the Ugi-type three component reaction) allowed for a rapid and efficient assembly of the polysubstituted oxindoles, which were used in situ toward the complex products, conferring features like robustness, sustainability, and the one-pot approach to this synthetic methodology.


Subject(s)
Pyridones/chemical synthesis , Pyrroles/chemical synthesis , Acylation , Cyclization , Molecular Structure , Phthalimides/chemistry , Pyridones/chemistry , Pyrroles/chemistry , Stereoisomerism
16.
Org Biomol Chem ; 16(9): 1402-1418, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29238790

ABSTRACT

Polyheterocycles are one of the most desired synthetic targets due to their numerous and valuable applications in various fields. Multicomponent reactions (MCRs) are highly convergent one-pot processes, in which three or more reagents are combined sequentially to construct complex products, with almost all the atoms coming from the starting reagents. In this context, the syntheses of 'heterocycles' via MCR-based processes have been reviewed a number of times. However, there is not a single review (recent or otherwise) covering the synthesis of 'polyheterocycles' via a direct MCR or via a one-pot process involving MCRs coupled to further cyclizations (via ionic, metal-catalyzed, pericyclic, or free-radical-mediated cyclizations). This issue is consequently the main topic of the present review, which considers work from the last decade. The work is categorized according to the key processes involved in the syntheses of polyheterocycles, aiming to give readers an easy understanding of this MCR-based chemistry and to provide insights for further investigations. The reaction mechanisms providing novel elements to these MCR-based methods for the synthesis of polyheterocycles are also discussed.

17.
Dalton Trans ; 46(28): 9192-9200, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28678240

ABSTRACT

Water and ethanol stabilities of the crystal structure of the Cu-based metal-organic framework (MOF) HKUST-1 have been investigated. Vapour (water and ethanol) sorption isotherms and cyclability were measured by a dynamic strategy. The ethanol sorption capacity of HKUST-1 at 303 K remained unchanged contrasting water sorption (which decreased along with the sorption experiment time). Considering the binding energy of each sorbate with the open Cu(ii) sites, obtained by the use of diffusion coefficients, we showed the superior crystal stability of the HKUST-1 framework towards ethanol. Finally, a small quantity of ethanol (pre-adsorbed) slightly enhanced CO2 capture without crystal structure degradation.

18.
Org Biomol Chem ; 15(11): 2363-2369, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28066847

ABSTRACT

A rapid and efficient synthesis of a series of (±)-nuevamine, (±)-lennoxamine and magallanesine aza analogues is described. The synthetic strategy involves Ugi-3CR and two further condensation processes, aza-Diels-Alder cycloaddition and the Pomeranz-Fritsch reaction. The variation of the chain-size in aldehyde moieties provided structural diversity in only two operational reaction steps.


Subject(s)
Dioxanes/chemical synthesis , Indole Alkaloids/chemical synthesis , Dioxanes/chemistry , Indole Alkaloids/chemistry , Molecular Structure , Stereoisomerism
19.
J Org Chem ; 81(21): 10576-10583, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27560617

ABSTRACT

A series of 18 3-tetrazolyl-tetrazolo[1,5-a]quinolines were synthesized in 21-90% yields via a novel one-pot Ugi-azide/SNAr/ring-chain azido-tautomerization process. We report also the synthesis of 10 3-imidazo[1,2-a]pyridin-tetrazolo[1,5-a]quinolines in 28-94% yields via a novel one-pot Groebke-Blackburn-Bienaymé/SNAr/ring-chain azido-tautomerization process. Both synthetic strategies involve the use of microwaves or ultrasound, and catalyst-free conditions. Finally, we show the synthesis of the tetrazolo[1,5-a]quinoline-3-carbaldehyde and tetrazolo[1,5-a]quinoline-3-dimethyl acetal at room temperature in methanol as solvent.

20.
Bioorg Med Chem Lett ; 26(9): 2333-8, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26996373

ABSTRACT

A series of nine new 3-acetamide-azepino[4,5-b]indol-4-ones were synthesized in two steps: (i) multicomponent reaction (Ugi-4CR/SN2) and (ii) free radical-mediated cyclization. These compounds, along with their tetrazole-based analogs, were studied in vitro to assess their binding with the 5-hydroxytryptamine type 6 receptor (5-Ht6R). The 3-acetamide-azepino[4,5-b]indol-4-ones displayed moderate affinity, whereas the 3-tetrazolylmethyl-azepino[4,5-b]indol-4-ones affinity values are lower. However, one of the 3-acetamide-azepino[4,5-b]indol-4-ones exhibited a hit value of Ki (211.2nM) to the 5-Ht6R. Minimal-energy structures of one cis-amide and its tetrazole-based analog (calculated by means of the Density Functional Theory) were analyzed to assess some interesting bioisosterism aspects. Interactions and binding energies between all products and the 5-Ht6R were calculated through in silico molecular couplings. Finally, a QSAR model was proposed using the results of the in vitro assays.


Subject(s)
Free Radicals/chemistry , Indoles/chemical synthesis , Receptors, Serotonin/metabolism , Cyclization , In Vitro Techniques , Indoles/metabolism , Indoles/pharmacology , Ligands , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL