Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Psychiatry ; 74(3): 293-299, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28097321

ABSTRACT

Importance: Autosomal recessive inherited neurodevelopmental disorders are highly heterogeneous, and many, possibly most, of the disease genes are still unknown. Objectives: To promote the identification of disease genes through confirmation of previously described genes and presentation of novel candidates and provide an overview of the diagnostic yield of exome sequencing in consanguineous families. Design, Setting, and Participants: Autozygosity mapping in families and exome sequencing of index patients were performed in 152 consanguineous families (the parents descended from a same ancestor) with at least 1 offspring with intellectual disability (ID). The study was conducted from July 1, 2008, to June 30, 2015, and data analysis was conducted from July 1, 2015, to August 31, 2016. Results: Of the 152 consanguineous families enrolled, 1 child (in 45 families [29.6%]) or multiple children (107 families [70.4%]) had ID; additional features were present in 140 of the families (92.1%). The mean (SD) age of the children was 10.3 (9.0) years, and 171 of 297 (57.6%) were male. In 109 families (71.7%), potentially protein-disrupting and clinically relevant variants were identified. Of these, a clear clinical genetic diagnosis was made in 56 families (36.8%) owing to 57 (likely) pathogenic variants in 50 genes already established in neurodevelopmental disorders (46 autosomal recessive, 2 X-linked, and 2 de novo) or in 7 previously proposed recessive candidates. In 5 of these families, potentially treatable disorders were diagnosed (mutations in PAH, CBS, MTHFR, CYP27A1, and HIBCH), and in 1 family, 2 disease-causing homozygous variants in different genes were identified. In another 48 families (31.6%), 52 convincing recessive variants in candidate genes that were not previously reported in regard to neurodevelopmental disorders were identified. Of these, 14 were homozygous and truncating in GRM7, STX1A, CCAR2, EEF1D, GALNT2, SLC44A1, LRRIQ3, AMZ2, CLMN, SEC23IP, INIP, NARG2, FAM234B, and TRAP1. The diagnostic yield was higher in individuals with severe ID (35 of 77 [45.5%]), in multiplex families (42 of 107 [39.3%]), in patients with additional features (30 of 70 [42.9%]), and in those with remotely related parents (15 of 34 [44.1%]). Conclusions and Relevance: Because of the high diagnostic yield of 36.8% and the possibility of identifying treatable diseases or the coexistence of several disease-causing variants, using exome sequencing as a first-line diagnostic approach in consanguineous families with neurodevelopmental disorders is recommended. Furthermore, the literature is enriched with 52 convincing candidate genes that are awaiting confirmation in independent families.


Subject(s)
Consanguinity , Exome/genetics , Genes, Recessive/genetics , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Neurodevelopmental Disorders/genetics , Sequence Analysis, DNA , Child , Chromosome Aberrations , DNA Mutational Analysis , Female , Germany , Homozygote , Humans , Male
2.
Eur J Hum Genet ; 19(11): 1161-6, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21629298

ABSTRACT

Non-specific intellectual disability of autosomal recessive inheritance (NS-ARID) represents an important fraction of severe cognitive dysfunction disorders. To date, only 10 genes have been identified, and further 24 linked-ARID loci have been reported, as well as others with suggestive linkage. To discover novel genes causing NS-ARID, we undertook genome-wide homozygosity mapping in 64 consanguineous multiplex families of Syrian descent. A total of 11 families revealed unique, significantly linked loci at 4q26-4q28 (MRT17), 6q12-q15 (MRT18), 18p11 (MRT19), 16p12-q12 (MRT20), 11p15 (MRT21), 11p13-q14 (MRT23), 6p12 (MRT24), 12q13-q15 (MRT25), 14q11-q12 (MRT26), 15q23-q26 (MRT27), and 6q26-q27 (MRT28), respectively. Loci ranged between 1.2 and 45.6 Mb in length. One family showed linkage to chromosome 8q24.3, and we identified a mutation in TRAPPC9. Our study further highlights the extreme heterogeneity of NS-ARID, and suggests that no major disease gene is to be expected, at least in this study group. Systematic analysis of large numbers of affected families, as presented here, will help discovering the genetic causes of ID.


Subject(s)
Chromosome Mapping , Consanguinity , Genetic Heterogeneity , Genetic Loci , Homozygote , Intellectual Disability/genetics , Adolescent , Adult , Carrier Proteins/genetics , Child , Child, Preschool , Family Health , Female , Humans , Intercellular Signaling Peptides and Proteins , Male , Mutation , Pedigree , Syria , Young Adult
3.
Appl Spectrosc ; 65(5): 467-73, 2011 May.
Article in English | MEDLINE | ID: mdl-21513588

ABSTRACT

Time-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations. Results on iron as a major component as well as on lead and copper as minor components are reported. Soil samples were dried and prepared as pressed pellets to minimize the effects of moisture and density on the results. LIBS analyses were performed with a Nd:YAG laser operating at 1064 nm, 60 mJ per 10 ns pulse, at a repetition rate of 10 Hz with a diameter of 500 µm on the sample surface. Good correlations were obtained between the LIBS signals and the values of concentrations deduced from inductively coupled plasma atomic emission spectroscopy (ICP-AES). This result proves that LIBS is an efficient method for optimizing sampling operations. Indeed, "LIBS maps" were established directly on-site, providing valuable assistance in optimizing the selection of the most relevant samples for future expensive and time-consuming laboratory analysis and avoiding useless analyses of very similar samples. Finally, it is emphasized that in situ LIBS is not described here as an alternative quantitative analytical method to the usual laboratory measurements but simply as an efficient time-saving tool to optimize sampling operations and to drastically reduce the number of soil samples to be analyzed, thus reducing costs. The detection limits of 200 ppm for lead and 80 ppm for copper reported here are compatible with the thresholds of toxicity; thus, this in situ LIBS campaign was fully validated for these two elements. Consequently, further experiments are planned to extend this study to other chemical elements and other matrices of soils.

SELECTION OF CITATIONS
SEARCH DETAIL
...