Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38543098

ABSTRACT

Aging is a known co-morbidity of ischemic stroke with its risk and severity increasing every year past 55+. While many of the current stroke therapies have shown success in reducing mortality, post-stroke morbidity has not seen the same substantial reduction. Recently, the involvement of cellular senescence and SASP in brain injury and neurological degeneration has been recognized. Ischemic injury causes oxidative stress and mitochondrial damage that induces senescence through the activation of p21 and p16 pathways, ultimately leading to synthesis and release of senescence-associated secretory phenotype (SASP). This ischemic event causes stress-induced premature senescence (SIPS), aging the brain decades beyond the standard biological age due to an increase in senescent cells in the ischemic core and ipsilateral hemisphere. Therefore, therapies that target the senescent cells and SASP, including senolytics, senomorphic drugs, stem cell therapies, and other cell-specific interventions, may be a new path for stroke treatment.

2.
Mol Neurobiol ; 61(1): 276-293, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37606717

ABSTRACT

The precursor nerve growth factor (ProNGF) and its receptor p75 neurotrophin receptor (p75NTR) are upregulated in several brain diseases, including ischemic stroke. The activation of p75NTR is associated with neuronal apoptosis and inflammation. Thus, we hypothesized that p75NTR modulation attenuates brain damage and improves functional outcomes after ischemic stroke. Two sets of experiments were performed. (1) Adult wild-type (WT) C57BL/6 J mice were subjected to intraluminal suture-middle cerebral artery occlusion (MCAO) to induce cerebral ischemia. Pharmacological inhibitor of p75NTR, LM11A-31 (50 mg/kg), or normal saline was administered intraperitoneally (IP) 1 h post-MCAO, and animals survived for 24 h. (2) Adult p75NTR heterozygous knockout (p75NTR+/-) and WT were subjected to photothrombotic (pMCAO) to induce ischemic stroke, and the animals survived for 72 h. The sensory-motor function of animals was measured using Catwalk XT. The brain samples were collected to assess infarction volume, edema, hemorrhagic transformation, neuroinflammation, and signaling pathway at 24 and 72 h after the stroke. The findings described that pharmacological inhibition and genetic knocking down of p75NTR reduce infarction size, edema, and hemorrhagic transformation following ischemic stroke. Additionally, p75NTR modulation significantly decreased several anti-apoptosis markers and improved sensory motor function compared to the WT mice following ischemic stroke. Our observations exhibit that the involvement of p75NTR in ischemic stroke and modulation of p75NTR could improve the outcome of ischemic stroke by increasing cell survival and enhancing motor performance. LM11A-31 has the potential to be a promising therapeutic agent for ischemic stroke. However, more evidence is needed to illuminate the efficacy of LM11A-31 in ischemic stroke.


Subject(s)
Brain Injuries , Ischemic Stroke , Mice , Animals , Receptor, Nerve Growth Factor/metabolism , Ischemic Stroke/complications , Ischemic Stroke/drug therapy , Mice, Inbred C57BL , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolism , Brain/metabolism , Infarction , Edema
3.
Exp Brain Res ; 241(10): 2487-2497, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37656197

ABSTRACT

Ischemic stroke is one of the major causes of devastating neurological disabilities and mortality worldwide. Despite extensive research for treatment approaches, there remains limited therapy in the stroke field. Therefore, more research is required for reproducibility to understand stroke pathology in pre-clinical studies. In the current modified method, mice were subjected to photothrombotic stroke (pt-MCA; proximal-middle cerebral artery was exposed with a 532 nm laser beam for 4 min) by retro-orbital injection of photosensitive dye, Rose Bengal (15 mg/kg) before the laser light exposure. Sensorimotor deficits were assessed by rotarod and catwalk test at 72 h following post-pt-MCAO, and brain samples were collected for infarct volume and hemorrhagic transformation (HT) assessments. Cognitive impairments were assessed by a novel objective recognition and Morris's water maze tests at the end of the follow-up. pt-MCAO animals significantly reduced body weight and impaired motor and cognitive functions. Furthermore, pt-MCAO animals showed apparent infarction, brain edema, and increased HT compared to the sham animals. Additionally, this method enables concurrent measurement of short-term and long-term neurological dysfunction with relatively larger cortical and sub-cortical infarct volume following pt-MCAO. With respect to the other models, this modified model offers enhanced reproducibility regarding infarct volume and cognitive/functional outcomes and avoids complications associated with critical surgeries and craniotomy. In conclusion, this modified model helps to understand stroke pathogenesis and minimize the animals' numbers which help to increase the scientific and statistical potential in pre-clinical studies.


Subject(s)
Stroke , Animals , Mice , Reproducibility of Results , Stroke/complications , Brain , Cognition , Infarction
4.
bioRxiv ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36993423

ABSTRACT

The novel coronavirus SARS-CoV-2 has caused significant global morbidity and mortality and continues to burden patients with persisting neurological dysfunction. COVID-19 survivors develop debilitating symptoms to include neuro-psychological dysfunction, termed "Long COVID", which can cause significant reduction of quality of life. Despite vigorous model development, the possible cause of these symptoms and the underlying pathophysiology of this devastating disease remains elusive. Mouse adapted (MA10) SARS-CoV-2 is a novel mouse-based model of COVID-19 which simulates the clinical symptoms of respiratory distress associated with SARS-CoV-2 infection in mice. In this study, we evaluated the long-term effects of MA10 infection on brain pathology and neuroinflammation. 10-week and 1-year old female BALB/cAnNHsd mice were infected intranasally with 10 4 plaque-forming units (PFU) and 10 3 PFU of SARS-CoV-2 MA10, respectively, and the brain was examined 60 days post-infection (dpi). Immunohistochemical analysis showed a decrease in the neuronal nuclear protein NeuN and an increase in Iba-1 positive amoeboid microglia in the hippocampus after MA10 infection, indicating long-term neurological changes in a brain area which is critical for long-term memory consolidation and processing. Importantly, these changes were seen in 40-50% of infected mice, which correlates to prevalence of LC seen clinically. Our data shows for the first time that MA10 infection induces neuropathological outcomes several weeks after infection at similar rates of observed clinical prevalence of "Long COVID". These observations strengthen the MA10 model as a viable model for study of the long-term effects of SARS-CoV-2 in humans. Establishing the viability of this model is a key step towards the rapid development of novel therapeutic strategies to ameliorate neuroinflammation and restore brain function in those suffering from the persistent cognitive dysfunction of "Long-COVID".

5.
Biomolecules ; 13(1)2023 01 05.
Article in English | MEDLINE | ID: mdl-36671492

ABSTRACT

Dementia currently has no cure and, due to the increased prevalence and associated economic and personal burden of this condition, current research efforts for the development of potential therapies have intensified. Recently, targeting integrins as a strategy to ameliorate dementia and other forms of cognitive impairment has begun to gain traction. Integrins are major bidirectional signaling receptors in mammalian cells, mediating various physiological processes such as cell-cell interaction and cell adhesion, and are also known to bind to the extracellular matrix. In particular, integrins play a critical role in the synaptic transmission of signals, hence their potential contribution to memory formation and significance in cognitive impairment. In this review, we describe the physiological roles that integrins play in the blood-brain barrier (BBB) and in the formation of memories. We also provide a clear overview of how integrins are implicated in BBB disruption following cerebral pathology. Given that vascular contributions to cognitive impairment and dementia and Alzheimer's' disease are prominent forms of dementia that involve BBB disruption, as well as chronic inflammation, we present current approaches shown to improve dementia-like conditions with integrins as a central focus. We conclude that integrins are vital in memory formation and that their disruption could lead to various forms of cognitive impairment. While further research to understand the relationships between integrins and memory is needed, we propose that the translational relevance of research efforts in this area could be improved through the use of appropriately aged, comorbid, male and female animals.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Cognitive Dysfunction/metabolism , Inflammation/metabolism , Integrins/metabolism , Humans
6.
Exp Neurol ; 359: 114161, 2023 01.
Article in English | MEDLINE | ID: mdl-35787888

ABSTRACT

The precursor form of nerve growth factor (proNGF) is essential to maintain NGF survival signaling. ProNGF is also among endogenous ligands for p75 neurotrophin receptor (p75ntr). Mounting evidence implies that p75ntr signaling contributes to neural damage in ischemic stroke. The present study examines the therapeutic effect of the p75ntr modulator LM11A-31. Adult mice underwent transient distal middle cerebral artery occlusion (t-dMCAO) followed by LM11A-31 treatment (25 mg/kg, i.p., twice daily) either for 72 h post-injury (acute phase) or afterward till two weeks post-stroke (subacute phase). LM11A-31 reduced blood-brain barrier permeability, cerebral tissue injury, and sensorimotor function in the acute phase of stroke. Ischemic brain samples showed repressed proNGF/P75ntr signaling and Caspase 3 activation in LM11A-31 treated mice, where we observed less reactive microglia and IL-1ß production. LM11A-31 (20-80 nM) also mitigated neural injury induced by oxygen-glucose deprivation (OGD) in sandwich co-cultures of primary cortical neurons (PCN) and astrocytes. This concurred with JNK/PARP downregulation and reduced caspase-3 cleavage in the PCNs and was associated with repressed proNGF generation in astrocytes. Further in vitro experiments indicated human proNGF suppresses the pro-inflammatory phenotype in microglial cultures, as determined by a sharp decline in HMGB-1 production and moderate arginase-1 upregulation. Despite significant protection in acute stroke, LM11A-31 treatment did not improve cortical atrophy and sensorimotor function in the subacute phase. Our findings provide preclinical evidence supporting LM11A-31 as a promising therapy for acute stroke injury. Further investigations may elucidate if reduced astrocytic proNGF, an endogenous reservoir of pro-neurotrophins, may restrict the therapeutic window.


Subject(s)
Receptor, Nerve Growth Factor , Stroke , Mice , Humans , Animals , Receptor, Nerve Growth Factor/metabolism , Nerve Growth Factor/metabolism , Astrocytes/metabolism , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolism , Stroke/drug therapy
7.
Neurochem Int ; 161: 105423, 2022 12.
Article in English | MEDLINE | ID: mdl-36244583

ABSTRACT

Intracerebral hemorrhage (ICH) is the second most common type of stroke with no satisfactory treatment. Recent studies from our group and others indicated a potential positive effect of verapamil, a commonly prescribed calcium channel blocker, with thioredoxin-interacting protein (TXNIP) inhibitor properties, in ischemic stroke and cognitive disorders. It is unclear whether there would be a beneficial effect of verapamil administration in ICH. Therefore, this study was designed to determine the neuroprotective effects of verapamil in a murine ICH model. ICH was induced by stereotactic injection of collagenase type VII (0.075 U) into the right striatum of adult male C57BL/6 mice. Verapamil (0.15 mg/kg) or saline was administered intravenously at 1 h post-ICH followed by oral (1 mg/kg/d) administration in drinking water for 28 days. Motor and cognitive function were assessed using established tests for motor coordination, spatial learning, short- and long-term memory. A subset of animals was sacrificed at 72 h after ICH for molecular analysis. Verapamil treatment reduced expression of TXNIP and NOD-like receptor pyrin domain-containing-3 inflammasome activation in the perihematomal area. These protective effects of verapamil were associated with decreased proinflammatory mediators, microglial activation, and blood-brain barrier permeability markers and paralleled less phosphorylated nuclear factor kappa B level. Our findings also demonstrate that long-term low-dose verapamil effectively attenuated motor and cognitive impairments. Taken together, these data indicate that verapamil has therapeutic potential in improving acute motor function after ICH. Further investigations are needed to confirm whether verapamil treatment could be a promising candidate for clinical trials.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Male , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Verapamil/pharmacology , Verapamil/therapeutic use , Mice, Inbred C57BL , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Carrier Proteins , Thioredoxins/metabolism
8.
Mol Psychiatry ; 27(11): 4754-4769, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35948662

ABSTRACT

Vascular cognitive impairment and dementia (VCID) is the second most common form of dementia after Alzheimer's disease (AD). Currently, the mechanistic insights into the evolution and progression of VCID remain elusive. White matter change represents an invariant feature. Compelling clinical neuroimaging and pathological evidence suggest a link between white matter changes and neurodegeneration. Our prior study detected hypoperfused lesions in mice with partial deficiency of endothelial nitric oxide (eNOS) at very young age, precisely matching to those hypoperfused areas identified in preclinical AD patients. White matter tracts are particularly susceptible to the vascular damage induced by chronic hypoperfusion. Using immunohistochemistry, we detected severe demyelination in the middle-aged eNOS-deficient mice. The demyelinated areas were confined to cortical and subcortical areas including the corpus callosum and hippocampus. The intensity of demyelination correlated with behavioral deficits of gait and associative recognition memory performances. By Evans blue angiography, we detected blood-brain barrier (BBB) leakage as another early pathological change affecting frontal and parietal cortex in eNOS-deficient mice. Sodium nitrate fortified drinking water provided to young and middle-aged eNOS-deficient mice completely prevented non-perfusion, BBB leakage, and white matter pathology, indicating that impaired endothelium-derived NO signaling may have caused these pathological events. Furthermore, genome-wide transcriptomic analysis revealed altered gene clusters most related to mitochondrial respiratory pathways selectively in the white matter of young eNOS-deficient mice. Using eNOS-deficient mice, we identified BBB breakdown and hypoperfusion as the two earliest pathological events, resulting from insufficient vascular NO signaling. We speculate that the compromised BBB and mild chronic hypoperfusion trigger vascular damage, along with oxidative stress and astrogliosis, accounting for the white matter pathological changes in the eNOS-deficient mouse model. We conclude that eNOS-deficient mice represent an ideal spontaneous evolving model for studying the earliest events leading to white matter changes, which will be instrumental to future therapeutic testing of drug candidates and for targeting novel/specific vascular mechanisms contributing to VCID and AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia, Vascular , White Matter , Animals , Mice , White Matter/pathology , Nitric Oxide/metabolism , Cerebrovascular Circulation , Dementia, Vascular/pathology , Dementia, Vascular/psychology , Disease Models, Animal , Cognitive Dysfunction/metabolism , Alzheimer Disease/metabolism
10.
Mol Neurobiol ; 59(7): 4124-4140, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35486224

ABSTRACT

Alzheimer's disease (AD), currently the single leading cause of death still on the rise, almost always coexists alongside vascular cognitive impairment (VCI). In fact, the ischemic disease affects up to 90% of AD patients, with strokes and major infarctions representing over a third of vascular lesions. Studies also confirmed that amyloid plaques, typical of AD, are much more likely to cause dementia if strokes or cerebrovascular damage also exist, leading to the term "mixed pathology" cognitive impairment. Although its incidence is expected to grow, there are no satisfactory treatments. There is hence an urgent need for safe and effective therapies that preserve cognition, maintain function, and prevent the clinical deterioration that results from the progression of this irreversible, neurodegenerative disease. To our knowledge, this is the first study to investigate the effects of long-term treatment with C21, a novel angiotensin II type 2 receptor (AT2R) agonist, on the development of "mixed pathology" cognitive impairment. This was accomplished using a unique model that employs the fundamental elements of both AD and VCI. Treatment with C21/vehicle was started 1 h post-stroke and continued for 5 weeks in mice with concurrent AD pathology. Efficacy was established through a series of functional tests assessing various aspects of cognition, including spatial learning, short-term/working memory, long-term/reference memory, and cognitive flexibility, in addition to the molecular markers characteristic of AD. Our findings demonstrate that C21 treatment preserves cognitive function, maintains cerebral blood flow, and reduces Aß accumulation and toxic tau phosphorylation in AD animals post-stroke.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Stroke , Alzheimer Disease/pathology , Amyloid beta-Peptides , Animals , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Disease Models, Animal , Humans , Imidazoles , Mice , Mice, Transgenic , Neurodegenerative Diseases/complications , Receptor, Angiotensin, Type 2 , Stroke/complications , Sulfonamides , Thiophenes
11.
Neuromolecular Med ; 24(3): 274-278, 2022 09.
Article in English | MEDLINE | ID: mdl-34542832

ABSTRACT

Recent studies demonstrated that the angiotensin type 2 receptor (AT2R) agonist, compound 21 (C21), provides neuroprotection and enhances recovery in experimental stroke. However, C21 has never been tested in traumatic brain injury (TBI). Here, we aim to examine whether C21 confers protection after TBI. Unilateral cortical impact injury was induced in young adult C57BL/6 mice. C21 (0.03 mg/kg, i.p.) was administered at 1 h and 3 h post-TBI. After neurological severity score (NSS) assessments, all animals were sacrificed for immunoblotting analysis at 24 h post-TBI. C21 treatment significantly ameliorated NSS and reduced TBI's biomarkers [high mobility group box 1 (HMGB1), aquaporin-4 (AQ4)] and inflammatory markers [interlukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α)] in the pericontusional areas compared to saline TBI. Further, C21 treatment induced interleukin-10 (IL-10) and phosphorylation of endothelial nitric oxide synthase (eNOS) after TBI. C21 also attenuated pro-apoptotic activation of poly (ADP-ribose) polymerase (PARP) and caspase-3. These findings support the therapeutic potential of C21 against TBI.


Subject(s)
Brain Injuries, Traumatic , Receptor, Angiotensin, Type 2 , Animals , Brain Injuries, Traumatic/drug therapy , Imidazoles , Inflammation/drug therapy , Interleukin-10/therapeutic use , Mice , Mice, Inbred C57BL , Receptor, Angiotensin, Type 2/agonists , Receptor, Angiotensin, Type 2/therapeutic use , Sulfonamides , Thiophenes
12.
J Stroke Cerebrovasc Dis ; 31(2): 106226, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34847489

ABSTRACT

OBJECTIVES: Acute hyperglycemia (HG) exacerbates reperfusion injury after stroke. Our recent studies showed that acute HG upregulates thioredoxin-interacting protein (TXNIP) expression, which in turn induces inflammation and neurovascular damage in a suture model of ischemic stroke. The aim of the present study was to investigate the effect of acute HG on TXNIP-associated neurovascular damage, in a more clinically relevant murine model of embolic stroke and intravenous tissue plasminogen activator (IV-tPA) reperfusion. MATERIALS AND METHODS: HG was induced in adult male mice, by intraperitoneal injection of 20% glucose. This was followed by embolic middle cerebral artery occlusion (eMCAO), with or without IV-tPA (10 mg/kg) given 3 h post embolization. Brain infarction, edema, hemoglobin content, expression of matrix metalloproteinase (MMP-9), vascular endothelial growth factor A (VEGFA), tight junction proteins (claudin-5, occluding, and zonula occludens-1), TXNIP, and NOD-like receptor protein3 (NLRP3)-inflammasome activation were evaluated at 24 h after eMCAO. RESULTS: HG alone significantly increased TXNIP in the brain after eMCAO, and this was associated with exacerbated hemorrhagic transformation (HT; as measured by hemoglobin content). IV-tPA in HG conditions showed a trend to decrease infarct volume, but worsened HT after eMCAO, suggesting that HG reduces the therapeutic efficacy of IV-tPA. Further, HG and tPA-reperfusion did not show significant differences in expression of MMP-9, VEGFA, junction proteins, and NLRP3 inflammasome activation between the groups. CONCLUSION: The current findings suggest a potential role for TXNIP in the occurrence of HT in hyperglycemic conditions following eMCAO. Further studies are needed to understand the precise role of vascular TXNIP on HG/tPA-induced neurovascular damage after stroke.


Subject(s)
Embolic Stroke , Hyperglycemia , Reperfusion , Tissue Plasminogen Activator , Animals , Carrier Proteins/physiology , Disease Models, Animal , Embolic Stroke/drug therapy , Embolic Stroke/pathology , Hyperglycemia/complications , Inflammasomes/physiology , Injections, Intravenous , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Thioredoxins/physiology , Tissue Plasminogen Activator/administration & dosage
13.
Viruses ; 15(1)2022 12 30.
Article in English | MEDLINE | ID: mdl-36680154

ABSTRACT

Increasing evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection impacts neurological function both acutely and chronically, even in the absence of pronounced respiratory distress. Developing clinically relevant laboratory mouse models of the neuropathogenesis of SARS-CoV-2 infection is an important step toward elucidating the underlying mechanisms of SARS-CoV-2-induced neurological dysfunction. Although various transgenic models and viral delivery methods have been used to study the infection potential of SARS-CoV-2 in mice, the use of commonly available laboratory mice would facilitate the study of SARS-CoV-2 neuropathology. Herein we show neuroinflammatory profiles of immunologically intact mice, C57BL/6J and BALB/c, as well as immunodeficient (Rag2-/-) mice, to a mouse-adapted strain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 (MA10)). Our findings indicate that brain IL-6 levels are significantly higher in BALB/c male mice infected with SARS-CoV-2 MA10. Additionally, blood-brain barrier integrity, as measured by the vascular tight junction protein claudin-5, was reduced by SARS-CoV-2 MA10 infection in all three strains. Brain glial fibrillary acidic protein (GFAP) mRNA was also elevated in male C57BL/6J infected mice compared with the mock group. Lastly, immune-vascular effects of SARS-CoV-2 (MA10), as measured by H&E scores, demonstrate an increase in perivascular lymphocyte cuffing (PLC) at 30 days post-infection among infected female BALB/c mice with a significant increase in PLC over time only in SARS-CoV-2 MA10) infected mice. Our study is the first to demonstrate that SARS-CoV-2 (MA10) infection induces neuroinflammation in laboratory mice and could be used as a novel model to study SARS-CoV-2-mediated cerebrovascular pathology.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Male , Female , Animals , COVID-19/pathology , Lung , Neuroinflammatory Diseases , Mice, Inbred C57BL , Disease Models, Animal , Mice, Transgenic
14.
J Alzheimers Dis ; 84(4): 1473-1484, 2021.
Article in English | MEDLINE | ID: mdl-34690145

ABSTRACT

BACKGROUND: Understanding Alzheimer's disease (AD) in terms of its various pathophysiological pathways is essential to unravel the complex nature of the disease process and identify potential therapeutic targets. The renin-angiotensin system (RAS) has been implicated in several brain diseases, including traumatic brain injury, ischemic stroke, and AD. OBJECTIVE: This study was designed to evaluate the protein expression levels of RAS components in postmortem cortical and hippocampal brain samples obtained from AD versus non-AD individuals. METHODS: We analyzed RAS components in the cortex and hippocampus of postmortem human brain samples by western blotting and immunohistochemical techniques in comparison with age-matched non-demented controls. RESULTS: The expression of AT1R increased in the hippocampus, whereas AT2R expression remained almost unchanged in the cortical and hippocampal regions of AD compared to non-AD brains. The Mas receptor was downregulated in the hippocampus. We also detected slight reductions in ACE-1 protein levels in both the cortex and hippocampus of AD brains, with minor elevations in ACE-2 in the cortex. We did not find remarkable differences in the protein levels of angiotensinogen and Ang II in either the cortex or hippocampus of AD brains, whereas we observed a considerable increase in the expression of brain-derived neurotrophic factor in the hippocampus. CONCLUSION: The current findings support the significant contribution of RAS components in AD pathogenesis, further suggesting that strategies focusing on the AT1R and AT2R pathways may lead to novel therapies for the management of AD.


Subject(s)
Alzheimer Disease/physiopathology , Autopsy , Brain/pathology , Cerebral Cortex/pathology , Hippocampus/pathology , Renin-Angiotensin System/physiology , Aged , Aged, 80 and over , Angiotensinogen/genetics , Female , Humans , Male , Peptidyl-Dipeptidase A/genetics , Receptor, Angiotensin, Type 1/genetics
15.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34681207

ABSTRACT

We hypothesize that endothelial-specific thioredoxin-interacting protein knock-out (EC-TXNIP KO) mice will be more resistant to the neurovascular damage (hemorrhagic-transformation-HT) associated with hyperglycemia (HG) in embolic stroke. Adult-male EC-TXNIP KO and wild-type (WT) littermate mice were injected with-streptozotocin (40 mg/kg, i.p.) for five consecutive days to induce diabetes. Four-weeks after confirming HG, mice were subjected to embolic middle cerebral artery occlusion (eMCAO) followed by tissue plasminogen activator (tPA)-reperfusion (10 mg/kg at 3 h post-eMCAO). After the neurological assessment, animals were sacrificed at 24 h for neurovascular stroke outcomes. There were no differences in cerebrovascular anatomy between the strains. Infarct size, edema, and HT as indicated by hemoglobin (Hb)-the content was significantly higher in HG-WT mice, with or without tPA-reperfusion, compared to normoglycemic WT mice. Hyperglycemic EC-TXNIP KO mice treated with tPA tended to show lower Hb-content, edema, infarct area, and less hemorrhagic score compared to WT hyperglycemic mice. EC-TXNIP KO mice showed decreased expression of inflammatory mediators, apoptosis-associated proteins, and nitrotyrosine levels. Further, vascular endothelial growth factor-A and matrix-metalloproteinases (MMP-9/MMP-3), which degrade junction proteins and increase blood-brain-barrier permeability, were decreased in EC-TXNIP KO mice. Together, these findings suggest that vascular-TXNIP could be a novel therapeutic target for neurovascular damage after stroke.

16.
Neurochem Int ; 148: 105104, 2021 09.
Article in English | MEDLINE | ID: mdl-34153352

ABSTRACT

Although the exact etiology of Alzheimer's disease (AD) is poorly understood, experimental and clinical evidences suggest the contribution of neuroinflammation in the pathogenesis of AD. Pathologically, AD brain is characterized by an imbalance in redox status, elevated endoplasmic reticulum (ER) stress, synaptic dysfunction, inflammation, and progressive neurodegeneration. It has been noted that continuous accumulation of amyloid-beta (Aß) and intracellular neurofibrillary tangles (NFTs) in AD brain trigger ER stress, which contributes to neurodegeneration. Similarly, experimental evidences supports the hypothesis that thioredoxin-interacting protein (TXNIP), an endogenous regulator of redox regulator thioredoxin (TRX), is activated by ER stress and contributes to activation of NLRP3 (NOD-like receptor protein 3) inflammatory cascade in hippocampus of the AD brain. Hippocampus of postmortem human AD and aged matched non-AD controls were analyzed for the expression ER stress markers and TXNIP-NLRP3 inflammasome at cellular and molecular levels. We found higher expression of TXNIP at protein and transcript levels in close association with pathological markers of AD such as Aß and NFTs in AD hippocampus. In addition, our results demonstrated that TXNIP was co-localized in neurons and microglia. Moreover, expression of binding immunoglobulin protein (BiP), activated eukaryotic initiation factor-2α (eIf2α) and C/EBP homology protein (CHOP), proteins involved the development of ER stress, were elevated in AD hippocampus. Further, elevated expression of effector molecules of NLRP3 inflammasome activation such as apoptosis associated speck-like protein (ASC), cleaved caspase-1 and cleaved interleukin-1ß were observed in the AD hippocampus. The study suggests that TXNIP could be a link that connect ER stress with neuroinflammation. Thus, TXNIP can be a possible therapeutic target to mitigate the progression of neuroinflammation in the pathogenesis of AD.


Subject(s)
Alzheimer Disease/genetics , Carrier Proteins/genetics , Endoplasmic Reticulum Stress , Hippocampus/pathology , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Aged , Aged, 80 and over , Biomarkers , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/metabolism , Eukaryotic Initiation Factor-2 , Female , Humans , Interleukin-1beta/metabolism , Male , Middle Aged , Transcription Factor CHOP/metabolism
17.
Neurobiol Dis ; 156: 105399, 2021 08.
Article in English | MEDLINE | ID: mdl-34029695

ABSTRACT

Immune system hypersensitivity is believed to contribute to mental frailty in the elderly. Solid evidence indicates NOD-like receptor pyrin domain containing-3 (NLRP3)-inflammasome activation intimately connects aging-associated chronic inflammation (inflammaging) to senile cognitive decline. Thioredoxin interacting protein (TXNIP), an inducible protein involved in oxidative stress, is essential for NLRP3 inflammasome activity. This study aims to find whether TXNIP/NLRP3 inflammasome pathway is involved in senile dementia. According to our studies on sex-matched mice, TXNIP was significantly upregulated in aged animals, paralleled by the NLRP3-inflammasome over-activity leading to enhanced caspase-1 cleavage and IL-1ß maturation, in both sexes. This was closely associated with depletion of the anti-aging and cognition enhancing protein klotho, in aged males. Txnip knockout reversed age-related NLRP3-hyperactivity and enhanced thioredoxin (TRX) levels. Further, TXNIP inhibition along with verapamil replicated TXNIP/NLRP3-inflammasome downregulation in aged animals, with FOXO-1 and mTOR upregulation. These alterations concurred with substantial improvements in both cognitive and sensorimotor abilities. Together, these findings substantiate the pivotal role of TXNIP to drive inflammaging in parallel with klotho depletion and functional decline, and delineate thioredoxin system as a potential target to decelerate senile dementia.


Subject(s)
Aging/metabolism , Brain/metabolism , Carrier Proteins/biosynthesis , Inflammation Mediators/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/biosynthesis , Thioredoxins/biosynthesis , Aging/genetics , Aging/pathology , Animals , Brain/pathology , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Female , Inflammation Mediators/antagonists & inhibitors , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Oxidative Stress/physiology , Thioredoxins/antagonists & inhibitors , Thioredoxins/genetics
18.
Metab Brain Dis ; 36(6): 1079-1086, 2021 08.
Article in English | MEDLINE | ID: mdl-33835385

ABSTRACT

Traumatic brain injury (TBI) alters brain function and is a crucial public health concern worldwide. TBI triggers the release of inflammatory mediators (cytokines) that aggravate cerebral damage, thereby affecting clinical prognosis. The renin angiotensin system (RAS) plays a critical role in TBI pathophysiology. RAS is widely expressed in many organs including the brain. Modulation of the RAS in the brain via angiotensin type 1 (AT1) and type 2 (AT2) receptor signaling affects many pathophysiological processes, including TBI. AT1R is highly expressed in neurons and astrocytes. The upregulation of AT1R mediates the effects of angiotensin II (ANG II) including release of proinflammatory cytokines, cell death, oxidative stress, and vasoconstriction. The AT2R, mainly expressed in the fetal brain during development, is also related to cognitive function. Activation of this receptor pathway decreases neuroinflammation and oxidative stress and improves overall cell survival. Numerous studies have illustrated the therapeutic potential of inhibiting AT1R and activating AT2R for treatment of TBI with variable outcomes. In this review, we summarize studies that describe the role of brain RAS signaling, through AT1R and AT2R in TBI, and its modulation with pharmacological approaches.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II/pharmacology , Brain Injuries, Traumatic/drug therapy , Renin-Angiotensin System/drug effects , Angiotensin II/metabolism , Animals , Humans , Inflammation Mediators/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Renin-Angiotensin System/physiology
19.
Mol Neurobiol ; 58(8): 3792-3804, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33847912

ABSTRACT

Thrombolytic therapy has remained quite challenging in hyperglycemic patients for its association with poor prognosis and increased hemorrhagic conversions. We recently showed that tissue plasminogen activator (tPA)-induced cerebrovascular damage is associated with thioredoxin-interacting protein (TXNIP) upregulation, which has an established role in the detrimental effects of hyperglycemia. In the present work, we investigated whether verapamil, an established TXNIP inhibitor, may provide protection against hyperglycemic stroke and tPA-induced blood-brain barrier (BBB) disruption. Acute hyperglycemia was induced by intraperitoneal administration of 20% glucose, 15 min prior to transient middle cerebral artery occlusion (tMCAO). Verapamil (0.15 mg/kg) or saline was intravenously infused with tPA at hyperglycemic reperfusion, 1 h post tMCAO. After 24 h of ischemia/reperfusion (I/R), mice were assessed for neurobehavioral deficits followed by sacrifice and evaluation of brain infarct volume, edema, and microbleeding. Alterations in TXNIP, inflammatory mediators, and BBB markers were further analyzed using immunoblotting or immunostaining techniques. As adjunctive therapy, verapamil significantly reduced tPA-induced BBB leakage, matrix metalloproteinase 9 (MMP-9) upregulation, and tight junction protein deregulation, which resulted in lesser hemorrhagic conversions. Importantly, verapamil strongly reversed tPA-induced TXNIP/NLRP3 (NOD-like receptor pyrin domain-containing-3) inflammasome activation and reduced infarct volume. This concurred with a remarkable decrease in high-mobility group box protein 1 (HMGB-1) and nuclear factor kappa B (NF-κB) stimulation, leading to less priming of NLRP3 inflammasome. This preclinical study supports verapamil as a safe adjuvant that may complement thrombolytic therapy by inhibiting TXNIP's detrimental role in hyperglycemic stroke.


Subject(s)
Carrier Proteins/metabolism , Hyperglycemia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Stroke/metabolism , Thioredoxins/metabolism , Tissue Plasminogen Activator/administration & dosage , Verapamil/administration & dosage , Animals , Carrier Proteins/antagonists & inhibitors , Drug Therapy, Combination , Fibrinolytic Agents/administration & dosage , Hyperglycemia/drug therapy , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Stroke/drug therapy , Thioredoxins/antagonists & inhibitors , Tissue Plasminogen Activator/toxicity , Vasodilator Agents/administration & dosage
20.
Mol Neurobiol ; 58(7): 3374-3387, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33704677

ABSTRACT

Currently, dementia is the only leading cause of death that is still on the rise, with total costs already exceeding those of cancer and heart disease and projected to increase even further in the coming years. Unfortunately, there are no satisfactory treatments and attempts to develop novel, more effective treatments have been extremely costly, albeit unsuccessful thus far. This has led us to investigate the use of established drugs, licensed for other therapeutic indications, for their potential application in cognitive disorders. This strategy, referred to as "drug repositioning," has been successful in many other areas including cancer and cardiovascular diseases. To our knowledge, this is the first study to investigate the effects of long-term treatment with verapamil, a calcium channel blocker commonly prescribed for various cardiovascular conditions and recently applied for prevention of cluster headaches, on the development of cognitive impairment in aged animals. Verapamil was studied at a low dose (1mg/kg/d) in a mouse model of sporadic Alzheimer's disease (sAD). Oral treatment with verapamil or vehicle was started, 24 h post-intracerebroventricular (ICV) streptozotocin/(STZ), in 12-month-old animals and continued for 3 months. Cognitive function was assessed using established tests for spatial learning, short-term/working memory, and long-term/reference memory. Our findings demonstrate that long-term low-dose verapamil effectively prevents development of ICV/STZ-induced cognitive impairment. It mitigates the astrogliosis and synaptic toxicity otherwise induced by ICV/STZ in the hippocampus of aged animals. These findings indicate that long-term, low-dose verapamil may delay progression of sAD in susceptible subjects of advanced age.


Subject(s)
Aging/drug effects , Alzheimer Disease/prevention & control , Cognitive Dysfunction/prevention & control , Disease Models, Animal , Streptozocin/toxicity , Verapamil/administration & dosage , Aging/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Animals , Brain/drug effects , Brain/metabolism , Calcium Channel Blockers/administration & dosage , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Drug Administration Schedule , Injections, Intraventricular , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...