Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 70(8): 2496-2505, 2023 08.
Article in English | MEDLINE | ID: mdl-37028076

ABSTRACT

OBJECTIVE: Microelectrodes allow the recording of neural activities with a high spatial resolution. However, their small sizes result in high impedance causing high thermal noise and poor signal-to-noise ratio. In drug-resistant epilepsy, the accurate detection of Fast Ripples (FRs) can help in the identification of epileptogenic networks. Consequently, good-quality recordings are instrumental in improving surgical outcomes. In this work, we propose a novel model-based approach for the design of microelectrodes optimized for FRs recording. METHODS: A 3D microscale computational model was developed to simulate FRs generated in the hippocampus. It was coupled with a model of the Electrode-Tissue Interface that accounts for the biophysical properties of intracortical microelectrode. This hybrid model was used to analyze the microelectrode geometrical and physical characteristics and their impact on recorded FRs. For model validation, experimental signals (local field potentials, LFPs) were recorded from CA1 using different electrode materials: stainless steel, gold, and gold coated with poly(3,4-ethylene dioxythiophene)/Poly(styrene sulfonate) (Au:PEDOT/PSS). RESULTS: results indicated that a radius between 65 and 120 µm for a wire microelectrode is the most optimal for recording FRs. In addition, in silico and in vivo quantified results showed a possible improvement in FRs observability using PEDOT/PSS coated microelectrodes. CONCLUSION: the optimization of the design of microelectrodes for FRs recording can improve the observability and detectability of FRs which are a recognized marker of epileptogenicity. SIGNIFICANCE: This model-based approach can assist in the design of hybrid electrodes that can be used in the presurgical evaluation of epileptic patients with drug-resistant epilepsy.


Subject(s)
Epilepsy , Polymers , Humans , Microelectrodes , Electrodes, Implanted , Epilepsy/diagnosis , Epilepsy/surgery , Gold
2.
J Mater Chem B ; 6(18): 2901-2906, 2018 May 14.
Article in English | MEDLINE | ID: mdl-32254243

ABSTRACT

Organic electrochemical transistors (OECTs) are being intensively developed for applications in electronics and biological interfacing. These devices rely on ions injected in a polymer film from an aqueous liquid electrolyte for their operation. However, the development of solid or semi-solid electrolytes are needed for future integration of OECTs into flexible, printed or conformable bioelectronic devices. Here, we present a new polyethylene glycol hydrogel with high Na+ conductivity which is particularly suitable for OECTs. This novel hydrogel was synthesized using cost-effective photopolymerization of poly(ethylene glycol)-dimethacrylate and sodium acrylate. Due to the high water content (83% w/w) and the presence of free Na+, the hydrogel showed high ionic conductivity values at room temperature (10-2 S cm-1) as characterized by electrochemical impedance spectroscopy. OECTs made using this hydrogel as a source of ions showed performance that was equivalent to that of OECTs employing a liquid electrolyte. They also showed improved stability, with only a 3% drop in current after 6 h of operation. This hydrogel paves the way for the replacement of liquid electrolytes in high performance OECTs bringing about advantages in terms of device integration and protection.

SELECTION OF CITATIONS
SEARCH DETAIL
...