Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Arch Toxicol ; 98(3): 837-848, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38182911

ABSTRACT

Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CLint values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CLint values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CLint values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.


Subject(s)
Chlorophenols , Liver , Microsomes, Liver , Polybrominated Biphenyls , Humans , Animals , Rats , Mice , Dogs , Swine , Swine, Miniature/metabolism , Microsomes, Liver/metabolism , Liver/metabolism , Glucuronosyltransferase/metabolism , Animals, Laboratory/metabolism , Protein Isoforms/metabolism , Haplorhini/metabolism , Kinetics , Glucuronides/metabolism , Uridine Diphosphate/metabolism
2.
Sci Rep ; 14(1): 758, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191647

ABSTRACT

Cough is known as a protective reflex to keep the airway free from harmful substances. Although brain activity during cough was previously examined mainly by functional magnetic resonance imaging (fMRI) with model analysis, this method does not capture real brain activity during cough. To obtain accurate measurements of brain activity during cough, we conducted whole-brain scans during different coughing tasks while correcting for head motion using a restraint-free positron emission tomography (PET) system. Twenty-four healthy right-handed males underwent multiple PET scans with [15O]H2O. Four tasks were performed during scans: "resting"; "voluntary cough (VC)", which simply repeated spontaneous coughing; "induced cough (IC)", where participants coughed in response to an acid stimulus in the cough-inducing method with tartaric acid (CiTA); and "suppressed cough (SC)", where coughing was suppressed against CiTA. The whole brain analyses of motion-corrected data revealed that VC chiefly activated the cerebellum extending to pons. In contrast, CiTA-related tasks (IC and SC) activated the higher sensory regions of the cerebral cortex and associated brain regions. The present results suggest that brain activity during simple cough is controlled chiefly by infratentorial areas, whereas manipulating cough predominantly requires the higher sensory brain regions to allow top-down control of information from the periphery.


Subject(s)
Cough , Tomography, X-Ray Computed , Male , Humans , Brain/diagnostic imaging , Cerebellum , Cerebral Cortex
3.
IEEE Trans Med Imaging ; 42(6): 1822-1834, 2023 06.
Article in English | MEDLINE | ID: mdl-37022039

ABSTRACT

List-mode positron emission tomography (PET) image reconstruction is an important tool for PET scanners with many lines-of-response and additional information such as time-of-flight and depth-of-interaction. Deep learning is one possible solution to enhance the quality of PET image reconstruction. However, the application of deep learning techniques to list-mode PET image reconstruction has not been progressed because list data is a sequence of bit codes and unsuitable for processing by convolutional neural networks (CNN). In this study, we propose a novel list-mode PET image reconstruction method using an unsupervised CNN called deep image prior (DIP) which is the first trial to integrate list-mode PET image reconstruction and CNN. The proposed list-mode DIP reconstruction (LM-DIPRecon) method alternatively iterates the regularized list-mode dynamic row action maximum likelihood algorithm (LM-DRAMA) and magnetic resonance imaging conditioned DIP (MR-DIP) using an alternating direction method of multipliers. We evaluated LM-DIPRecon using both simulation and clinical data, and it achieved sharper images and better tradeoff curves between contrast and noise than the LM-DRAMA, MR-DIP and sinogram-based DIPRecon methods. These results indicated that the LM-DIPRecon is useful for quantitative PET imaging with limited events while keeping accurate raw data information. In addition, as list data has finer temporal information than dynamic sinograms, list-mode deep image prior reconstruction is expected to be useful for 4D PET imaging and motion correction.


Subject(s)
Image Processing, Computer-Assisted , Positron-Emission Tomography , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Motion , Computer Simulation , Algorithms , Phantoms, Imaging
4.
Chem Biol Interact ; 372: 110353, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36657734

ABSTRACT

Phthalates are widely used plasticizers that are primarily and rapidly metabolized to monoester phthalates in mammals. In the present study, the hydrolysis of dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) in the human liver, small intestine, kidney, and lung was examined by the catalytic, kinetic, and inhibition analyses using organ microsomal and cytosolic fractions and recombinant carboxylesterases (CESs). The Vmax (y-intercept) values based on the Eadie-Hofstee plots of DBP hydrolysis were liver > small intestine > kidney > lung in microsomes, and liver > small intestine > lung > kidney in cytosol, respectively. The CLint values (x-intercept) were small intestine > liver > kidney > lung in both microsomes and cytosol. The Vmax and CLint or CLmax values of DEHP hydrolysis were small intestine > liver > kidney > lung in both microsomes and cytosol. Bis(4-nitrophenyl) phosphate (BNPP) effectively inhibited the activities of DBP and DEHP hydrolysis in the microsomes and cytosol of liver, small intestine, kidney, and lung. Although physostigmine also potently inhibited DBP and DEHP hydrolysis activities in both the microsomes and cytosol of the small intestine and kidney, the inhibitory effects in the liver and lung were weak. In recombinant CESs, the Vmax values of DBP hydrolysis were CES1 (CES1b, CES1c) > CES2, whereas the CLmax values were CES2 > CES1 (CES1b, CES1c). On the other hand, the Vmax and CLmax values of DEHP hydrolysis were CES2 > CES1 (CES1b, CES1c). These results suggest an extensive organ-dependence of DBP and DEHP hydrolysis due to CES expression, and that CESs are responsible for the metabolic activation of phthalates.


Subject(s)
Dibutyl Phthalate , Diethylhexyl Phthalate , Animals , Humans , Carboxylic Ester Hydrolases/metabolism , Diethylhexyl Phthalate/pharmacology , Hydrolysis , Liver/metabolism , Intestine, Small/metabolism , Microsomes/metabolism , Kidney/metabolism , Lung/metabolism , Mammals/metabolism
5.
J Toxicol Sci ; 48(1): 37-45, 2023.
Article in English | MEDLINE | ID: mdl-36599426

ABSTRACT

Transient Receptor Potential Ankyrin 1 (TRPA1), which is expressed in the airways, has causative and exacerbating roles in respiratory diseases. TRPA1 is known as a target of sick building syndrome-related air pollutants, such as formaldehyde. Thus, an in vitro TRPA1 activation assay would be useful for predicting the potential risk of air pollution. In this study, we used human TRPA1 (hTRPA1)- and mouse TRPA1 (mTRPA1)-expressing cell lines to measure TRPA1 activation by the emerging indoor air pollutants 2-ethyl-1-hexanol (2-EH), a mixture of 2,2,4-trimethyl-1,3-pentanediol 1- and 3-monoisobutyrate (Texanol), and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). The results indicated that 2-EH activated both hTRPA1 and mTRPA1 in a concentration-dependent manner, whereas TXIB did not activate hTRPA1 or mTRPA1. Texanol also activated hTRPA1 in a concentration-dependent manner. In contrast, a bell-shaped concentration-dependent curve was observed for mouse TRPA1 activation by Texanol, indicating inhibitory effects at a higher concentration range, which was also reported for menthol, a typical TRPA1 modulator. To further elucidate the mechanism underlying the species difference in TRPA1 activation by Texanol, V875G and G878V mutations were introduced into hTRPA1 and mTRPA1, respectively, which were reported to be key mutations for the inhibitory effect of menthol. These mutations switched the inhibitory effects of Texanol; thus, hTRPA1/V875G, but not mTRPA1/G878V, was inhibited at higher concentrations of Texanol. These results indicate that Texanol shares an interaction site with menthol. Overall, these findings suggest that careful interpretation is necessary when extrapolating rodent TRPA1-dependent toxicological effects to humans, especially with respect to the risk assessment of indoor air pollutants.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Humans , Mice , Animals , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Menthol , Species Specificity , Air Pollutants/toxicity , TRPA1 Cation Channel/genetics
6.
Phys Med Biol ; 68(1)2022 12 22.
Article in English | MEDLINE | ID: mdl-36560889

ABSTRACT

Objective. The aim of this study is to evaluate the performance characteristics of a brain positron emission tomography (PET) scanner composed of four-layer independent read-out time-of-flight depth-of-interaction (TOF-DOI) detectors capable of first interaction position (FIP) detection, using Geant4 application for tomographic emission(GATE). This includes the spatial resolution, sensitivity, count rate capability, and reconstructed image quality.Approach. The proposed TOF-DOI PET detector comprises four layers of a 50 × 50 cerium-doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) scintillator array with 1 mm pitch size, coupled to a 16 × 16 multi-pixel photon counter array with 3.0 mm × 3.0 mm photosensitive segments. Along the direction distant from the center field-of-view (FOV), the scintillator thickness of the four layers is 2.5, 3, 4, and 6 mm. The four layers were simulated with a 150 ps coincidence time resolution and the independent readout make the FIP detection capable. The spatial resolution and imaging performance were compared among the true-FIP, winner-takes-all (WTA) and front-layer FIP (FL-FIP) methods (FL-FIP selects the interaction position located on the front-most interaction layer in all the interaction layers). The National Electrical Manufacturers Association NU 2-2018 procedure was referred and modified to evaluate the performance of proposed scanner.Main results. In detector evaluation, the intrinsic spatial resolutions were 0.52 and 0.76 mm full width at half-maximum (FWHM) at 0° and 30° incidentγ-rays in the first layer pair, respectively. The reconstructed spatial resolution by the filter backprojection (FBP) achieved sub-millimeter FWHM on average over the whole FOV. The maximum true count rate was 207.6 kcps at 15 kBq ml-1and the noise equivalent count rate (NECR_2R) was 54.7 kcps at 6.0 kBq ml-1. Total sensitivity was 45.2 cps kBq-1and 48.4 cps kBq-1at the center and 10 cm off-center FOV, respectively. The TOF and DOI reconstructions significantly improved the image quality in the phantom studies. Moreover, the FL-FIP outperformed the conventional WTA method in terms of the spatial resolution and image quality.Significance. The proposed brain PET scanner could achieve sub-millimeter spatial resolution and high image quality with TOF and DOI reconstruction, which is meaningful to the clinical oncology research. Meanwhile, the comparison among the three positioning methods indicated that the FL-FIP decreased the image degradation caused by Compton scatter more than WTA.


Subject(s)
Positron-Emission Tomography , Tomography, X-Ray Computed , Positron-Emission Tomography/methods , Silicates , Brain/diagnostic imaging , Phantoms, Imaging , Equipment Design
7.
Biol Pharm Bull ; 45(12): 1839-1846, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36223942

ABSTRACT

Phthalic acid (PA) diesters are widely used in consumer products, as plasticizers, and are ubiquitous environmental pollutants. There is a growing concern about their adjuvant effect on allergic diseases. Although its precise mechanism remains unknown, possible involvement of transient receptor potential ankyrin 1 (TRPA1) has been suggested. Hence, in this study, the activation of human and mouse TRPA1s by a series of PA di- and monoesters was investigated using a heterologous expression system in vitro. Consequently, it was found that monoesters activated human TRPA1, where EC50 values were in the order of mono-hexyl > mono-heptyl > mono-n-octyl > mono-2-ethylhexyl > mono-isononyl and mono-isodecyl esters. Significant species differences in TRPA1 activation by PA monoesters were also discovered; PA monoesters activated human TRPA1 but not mouse TRPA1 in a concentration-dependent manner up to 50 µM. These findings suggest that PA esters may exert TRPA1-dependent adverse effects on humans, which have never been demonstrated in experimental animals.


Subject(s)
Phthalic Acids , TRPA1 Cation Channel , Animals , Humans , Phthalic Acids/toxicity , Plasticizers , Species Specificity , Mice , TRPA1 Cation Channel/metabolism
8.
Biol Pharm Bull ; 45(8): 1116-1123, 2022.
Article in English | MEDLINE | ID: mdl-35908893

ABSTRACT

Flavones, which are distributed in a variety of plants and foods in nature, possess significant biological activities, including antitumor and anti-inflammatory effects, and are metabolized into glucuronides by uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) enzymes in humans. In this study, apigenin, acacetin, and genkwanin, flavones having hydroxyl groups at C5, C7, and/or C4'positions were focused on, and the regioselective glucuronidation in human liver and intestinal microsomes was examined. Two glucuronides (namely, AP-7G and AP-4'G for apigenin, AC-5G and AC-7G for acacetin, and GE-5G and GE-4'G for genkwanin) were formed from each flavone by liver and intestinal microsomes, except for only GE-4'G formation from genkwanin by intestinal microsomes. The order of total glucuronidation activities was liver microsomes > intestinal microsomes for apigenin and acacetin, and liver microsomes < intestinal microsomes for genkwanin. The order of CLint values (x-intercept) based on v versus V/[S] plots for apigenin glucuronidation was AP-7G > AP-4'G in liver microsomes and AP-7G < AP-4'G in intestinal microsomes. The order of CLint values was AC-5G < AC-7G for acacetin and GE-5G < GE-4'G genkwanin glucuronidation in both liver and intestinal microsomes. This suggests that the abilities and roles of UGT enzymes in the glucuronidation of apigenin, acacetin, and genkwanin in humans differ depending on the chemical structure of flavones.


Subject(s)
Apigenin , Flavones , Microsomes , Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Humans , Intestines/metabolism , Liver/metabolism , Microsomes/metabolism , Microsomes, Liver/metabolism
9.
Biol Pharm Bull ; 45(8): 1185-1190, 2022.
Article in English | MEDLINE | ID: mdl-35908900

ABSTRACT

Bitter taste receptors (TAS2Rs) are expressed by oral cavity cells in mammals and classically function as sensors for bitter compounds. There are 25 functional isoforms of human TAS2Rs, with individual bitter ligands. Each human TAS2R isoform is distributed in several tissues, such as the airway epithelia and gastrointestinal tract, and plays an important role in physiological functions. However, quantification of each isoform is difficult because of highly homologous sequences between some TAS2R isoforms. Therefore, differentiating the isoforms by their expression levels is suitable for clarifying the tissue-specific effects of bitter compounds. In this study, we developed a real-time quantitative PCR (qPCR) method to determine the expression of each TAS2R isoform. Using plasmid standards harboring each isoform, we confirmed that the current assay can quantify the gene expression of each isoform, with negligible interference from other isoforms. In addition, our methods can successfully discriminate between the mRNA expression of each isoform in human cell lines and tissues. Therefore, this qPCR method can successfully quantify the mRNA level of each TAS2R isoform. This method will contribute to a better understanding of the molecular mechanisms underlying the TAS2R ligand-activated signal transduction.


Subject(s)
Protein Isoforms , Receptors, G-Protein-Coupled , Taste , Animals , Humans , Ligands , Protein Isoforms/genetics , RNA, Messenger , Real-Time Polymerase Chain Reaction , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Transcription, Genetic
10.
Ann Nucl Med ; 36(8): 746-755, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35698016

ABSTRACT

OBJECTIVE: Various motion correction (MC) algorithms for positron emission tomography (PET) have been proposed to accelerate the diagnostic performance and research in brain activity and neurology. We have incorporated MC system-based optical motion tracking into the brain-dedicated time-of-flight PET scanner. In this study, we evaluate the performance characteristics of the developed PET scanner when performing MC in accordance with the standards and guidelines for the brain PET scanner. METHODS: We evaluate the spatial resolution, scatter fraction, count rate characteristics, sensitivity, and image quality of PET images. The MC evaluation is measured in terms of the spatial resolution and image quality that affect movement. RESULTS: In the basic performance evaluation, the average spatial resolution by iterative reconstruction was 2.2 mm at 10 mm offset position. The measured peak noise equivalent count rate was 38.0 kcps at 16.7 kBq/mL. The scatter fraction and system sensitivity were 43.9% and 22.4 cps/(Bq/mL), respectively. The image contrast recovery was between 43.2% (10 mm sphere) and 72.0% (37 mm sphere). In the MC performance evaluation, the average spatial resolution was 2.7 mm at 10 mm offset position, when the phantom stage with the point source translates to ± 15 mm along the y-axis. The image contrast recovery was between 34.2 % (10 mm sphere) and 66.8 % (37 mm sphere). CONCLUSIONS: The reconstructed images using MC were restored to their nearly identical state as those at rest. Therefore, it is concluded that this scanner can observe more natural brain activity.


Subject(s)
Positron-Emission Tomography , Tomography, X-Ray Computed , Brain/diagnostic imaging , Head , Humans , Phantoms, Imaging , Positron-Emission Tomography/methods
11.
Drug Chem Toxicol ; 45(4): 1565-1569, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33187449

ABSTRACT

Bisphenol A (BPA) is an endocrine-disrupting chemical, and is predominantly metabolized into glucuronide in mammals. The present study was conducted in order to examine the hepatic and intestinal glucuronidation of BPA in humans and laboratory animals such as monkeys, dogs, rats, and mice in an in vitro system using microsomal fractions. Km, Vmax, and CLint values in human liver microsomes were 7.54 µM, 17.7 nmol/min/mg protein, and 2.36 mL/min/mg protein, respectively. CLint values in liver microsomes of monkey, dogs, rats, and mice were 1.5-, 2.4-, 1.7- and 8.2-fold that of humans, respectively. In intestinal microsomes, Km, Vmax, and CLint values in humans were 39.3 µM, 0.65 nmol/min/mg protein, and 0.02 mL/min/mg protein, respectively. The relative levels of CLint in monkey, dogs, rats, and mice to that of humans were 7.0-, 12-, 34-, and 29-fold, respectively. Although CLint values were higher in liver microsomes than in intestinal microsomes in all species, and marked species difference in the ratio of liver to intestinal microsomes was observed as follows: humans, 118; monkeys, 25; dogs, 23; rats, 5.9; mice, 33. These results suggest that the functional roles of UDP-glucuronosyltransferase (UGT) enzymes expressed in the liver and intestines in the metabolism of BPA extensively differ among humans, monkeys, dogs, rats, and mice.


Subject(s)
Intestinal Mucosa , Microsomes , Animals , Animals, Laboratory , Benzhydryl Compounds , Dogs , Humans , Intestinal Mucosa/metabolism , Intestines , Liver/metabolism , Macaca fascicularis , Mammals , Mice , Microsomes/metabolism , Microsomes, Liver , Phenols , Rats , Species Specificity
12.
Ann Nucl Med ; 35(6): 691-701, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33811600

ABSTRACT

OBJECTIVES: Attenuation correction (AC) is crucial for ensuring the quantitative accuracy of positron emission tomography (PET) imaging. However, obtaining accurate µ-maps from brain-dedicated PET scanners without AC acquisition mechanism is challenging. Therefore, to overcome these problems, we developed a deep learning-based PET AC (deep AC) framework to synthesize transmission computed tomography (TCT) images from non-AC (NAC) PET images using a convolutional neural network (CNN) with a huge dataset of various radiotracers for brain PET imaging. METHODS: The proposed framework is comprised of three steps: (1) NAC PET image generation, (2) synthetic TCT generation using CNN, and (3) PET image reconstruction. We trained the CNN by combining the mixed image dataset of six radiotracers to avoid overfitting, including [18F]FDG, [18F]BCPP-EF, [11C]Racropride, [11C]PIB, [11C]DPA-713, and [11C]PBB3. We used 1261 brain NAC PET and TCT images (1091 for training and 70 for testing). We did not include [11C]Methionine subjects in the training dataset, but included them in the testing dataset. RESULTS: The image quality of the synthetic TCT images obtained using the CNN trained on the mixed dataset of six radiotracers was superior to those obtained using the CNN trained on the split dataset generated from each radiotracer. In the [18F]FDG study, the mean relative PET biases of the emission-segmented AC (ESAC) and deep AC were 8.46 ± 5.24 and - 5.69 ± 4.97, respectively. The deep AC PET and TCT AC PET images exhibited excellent correlation for all seven radiotracers (R2 = 0.912-0.982). CONCLUSION: These results indicate that our proposed deep AC framework can be leveraged to provide quantitatively superior PET images when using the CNN trained on the mixed dataset of PET tracers than when using the CNN trained on the split dataset which means specific for each tracer.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Positron-Emission Tomography , Fluorodeoxyglucose F18 , Multimodal Imaging
13.
Biopharm Drug Dispos ; 42(5): 218-225, 2021 May.
Article in English | MEDLINE | ID: mdl-33754379

ABSTRACT

Favipiravir is an antiviral agent effective against several RNA viruses that is converted into an inactive oxidative metabolite (M1), mainly by aldehyde oxidase, in humans. In the present study, the biotransformation of favipiravir into M1 in male and female humans, monkeys, rats, and mice was examined in an in vitro system using liver cytosolic fractions. The kinetics for M1 formation followed the Michaelis-Menten model in all species. The Km , Vmax , and CLint values in humans were 602 µM, 466 pmol/min/mg protein, and 776 nl/min/mg protein in males, respectively, and 713 µM, 404 pmol/min/mg protein, and 567 nl/min/mg protein in females, respectively. Species differences in CLint values were monkeys > humans > mice > rats in both males and females, and the variations for males and females were 120- and 96-fold, respectively. Sex differences in CLint values were males > females in humans and mice, females > males in monkeys and rats, and marked variation (4.3-fold) was noted in mice. This suggests that the roles of aldehyde oxidase in the hepatic metabolism of favipiravir differ extensively depending on the species and sex, and this study will aid in the assessment of the antiviral activities of favipiravir against novel and/or variant viruses.


Subject(s)
Amides/metabolism , Antiviral Agents/metabolism , Pyrazines/metabolism , Adolescent , Adult , Aged , Animals , Biotransformation , Child , Child, Preschool , Cytosol/metabolism , Female , Humans , Liver/metabolism , Macaca fascicularis , Male , Mice , Microsomes, Liver/metabolism , Middle Aged , Rats, Sprague-Dawley , Sex Characteristics , Species Specificity , Young Adult
14.
J Vet Med Sci ; 82(5): 516-519, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32238624

ABSTRACT

There have been no reports of the prevalence of Eimeria spp. in poultry breeding farms in Japan unlike those of broiler farms. From 2017 to 2018, we examined the prevalence of Eimeria spp. on breeding farms in Japan by oocyst morphology and PCR analyses. A total of 143 samples was collected from 37 breeding farms in 21 prefectures of Japan. We detected oocysts of seven species at 34 of 37 breeding farms by PCR, and we identified E. brunetti at 51.5% of farms found to be positive for Eimeria. The differences in the identification of Eimeria spp. between the morphology and PCR assay methods of oocysts were pronounced for E. maxima and E. necatrix. We confirmed that molecular tools were more suitable for accurately estimating prevalence of Eimeria spp., and these findings suggest that E. brunetti could be widespread in Japan.


Subject(s)
Chickens , Eimeria/isolation & purification , Poultry Diseases/parasitology , Animals , Eimeria/classification , Japan/epidemiology , Poultry Diseases/epidemiology , Selective Breeding
15.
Xenobiotica ; 50(8): 906-912, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32005083

ABSTRACT

Wogonin, one of the flavonoids isolated from Scutellaria baicalensis, exhibits some beneficial bioactivities, including anti-inflammatory and anticancer effects, and is metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in humans. In the present study, wogonin glucuronidation was examined in the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice using a kinetic analysis.The kinetics of wogonin glucuronidation by liver microsomes followed the biphasic model in all species examined. CLint values (x-intercept) based on v versus V/[S] plots were rats > humans ≈ monkeys > mice > dogs. The kinetics of intestinal microsomes fit the Michaelis-Menten model for humans, monkeys, rats, and mice and the substrate inhibition model for dogs. CLint values were rats > monkeys > mice > dogs > humans. The tissue dependence of CLint values was liver microsomes > intestinal microsomes for humans, dogs, and rats, and liver microsomes ≈ intestinal microsomes for monkeys and mice.These results demonstrated that the metabolic abilities of UGT enzymes toward wogonin in the liver and intestines markedly differ among humans, monkeys, dogs, rats, and mice, and suggest that species differences are closely associated with the biological effects of wogonin.


Subject(s)
Flavanones/metabolism , Plant Extracts/metabolism , Animals , Dogs , Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Humans , Intestines , Kinetics , Liver/metabolism , Macaca fascicularis/metabolism , Mice , Microsomes, Liver/metabolism , Rats , Scutellaria baicalensis
16.
Stereotact Funct Neurosurg ; 97(4): 241-243, 2019.
Article in English | MEDLINE | ID: mdl-31743916

ABSTRACT

The beneficial effect of thalamic deep brain stimulation (DBS) on action tremor has been reported in a few cases of spinocerebellar ataxia (SCA); however, several factors should be taken into account regarding the indication for DBS in advanced cases. We performed DBS of the ventral intermediate nucleus (Vim) of the thalamus for treatment of coarse action tremor in a patient with SCA2 (spinocerebellar ataxia type 2) in the wheelchair-bound stage. Although improvement of the tremor of the proximal part was incomplete, the patient regained substantial parts of daily functioning. The effect lasted for more than 6 years, and the suppression of tremor significantly contributed to maintaining the level of the patient's expression into the bedridden stage. Vim DBS can be a treatment option for tremor in SCA patients, even in the advanced stage, as long as the tremor is depriving the patient of behavioral expression. As residual proximal tremor may hamper functional recovery, DBS of other targets or multi-targets should be further explored to attain a better outcome.


Subject(s)
Deep Brain Stimulation/methods , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/therapy , Tremor/diagnostic imaging , Tremor/therapy , Ventral Thalamic Nuclei/diagnostic imaging , Female , Humans , Middle Aged , Spinocerebellar Ataxias/physiopathology , Time Factors , Tremor/physiopathology , Ventral Thalamic Nuclei/physiopathology
17.
Infect Genet Evol ; 75: 103993, 2019 11.
Article in English | MEDLINE | ID: mdl-31394291

ABSTRACT

Attenuated strains of avian Eimeria parasites, generated by the selection of precocious lines through serial passaging in chicks, have been used widely as live vaccines. Detailed morphological transitions including their life cycle depending on the passages remain poorly understood. Here, we showed early development and acceleration of transitions in morphological forms of the asexual schizonts of E. tenella that had been attenuated for virulence by serial passaging. Our results may be helpful in understanding parasitism, facilitating further molecular analyses such as comparative genomic or transcriptomic tests.


Subject(s)
Chickens/parasitology , Eimeria tenella/physiology , Schizonts/physiology , Serial Passage/veterinary , Animals , Eimeria tenella/pathogenicity , Feces/parasitology , Life Cycle Stages , Schizonts/pathogenicity , Vaccines, Attenuated , Virulence
18.
Food Chem Toxicol ; 131: 110542, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31163218

ABSTRACT

S-equol, an active metabolite of the soy isoflavone daidzein, is mainly metabolized into glucuronide(s) by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, S-equol glucuronidation was examined in the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice using a kinetic analysis. CLint values for 7- and 4'-glucuronidation by liver microsomes were higher than those by intestinal microsomes in all species. CLint values for total glucuronidation (sum of 7- and 4'-glucuronidation) were rats (7.6) > monkeys (5.8) > mice (4.9) > dogs (2.8) > humans (1.0) for liver microsomes, and rats (9.6) > mice (2.8) > dogs (1.3) ≥ monkeys (1.2) > humans (1.0) for intestinal microsomes, respectively. Regarding regioselective glucuronidation by liver and intestinal microsomes, CLint values were 7-glucuronidation > 4'-glucuronidation for humans, monkeys, dogs, and mice, and 4'-glucuronidation > 7-glucuronidation for rats. These results suggest that the metabolic abilities of UGT enzymes toward S-equol in the liver and intestines markedly differ among humans, monkeys, dogs, rats, and mice.


Subject(s)
Equol/metabolism , Glucuronides/biosynthesis , Microsomes, Liver/metabolism , Adolescent , Adult , Aged , Animals , Child , Child, Preschool , Dogs , Equol/chemistry , Glucuronosyltransferase/metabolism , Humans , Intestinal Mucosa/metabolism , Kinetics , Macaca fascicularis , Mice , Middle Aged , Rats, Sprague-Dawley , Stereoisomerism , Young Adult
19.
Toxicol In Vitro ; 54: 237-242, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30315871

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that is rapidly metabolized to mono(2-ethylhexyl) phthalate (MEHP), an active metabolite, in mammals. In the present study, the hydrolysis of DEHP by the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice was examined. The kinetics of liver microsomes fit the Michaelis-Menten model for humans, monkeys, and rats, and the Hill model for dogs and mice. Km or S50 values were similar among species, whereas Vmax exhibited species differences of approximately 9-fold. CLint or CLmax values were in the order of mice > dogs > monkeys ≥ rats > humans. Hydrolytic activity towards DEHP was not detected in the intestinal microsomes of humans or dogs. The kinetics of monkeys, rats, and mice followed the Hill model. In comparisons of the liver microsomes of each species, S50 values were similar, while Vmax and CLmax values (mice > rats > monkeys) were considerably lower (approximately 5-25%). These results suggest that hydrolytic activity towards DEHP in the liver and intestines markedly differ among humans and non-rodent and rodent experimental animals, and imply that species differences are closely associated with the toxicity of DEHP.


Subject(s)
Diethylhexyl Phthalate/pharmacology , Intestines , Liver , Microsomes/metabolism , Plasticizers/pharmacology , Adolescent , Adult , Aged , Animals , Dogs , Humans , Hydrolysis , Macaca fascicularis , Mice , Middle Aged , Rats, Sprague-Dawley , Species Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...