Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 91(4): 045108, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32357724

ABSTRACT

An abrasive-free polishing method using water and a Pt catalyst, called catalyst-referred etching (CARE), has been developed for the finishing of optical and semiconductor surfaces. This method realizes well-ordered surfaces with a smoothness of several tens of picometers without crystallographic disturbance. In this study, we propose a new CARE method using a Ni catalyst with in situ electrochemical plating and dissolution, which enable enhancing the catalytic capability of Ni. This method has advantages to realize more than ten times higher removal rate and better stability compared with the conventional CARE method.

2.
Rev Sci Instrum ; 90(4): 045115, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31043040

ABSTRACT

A catalytically assisted etching system was developed for the ultra-precision fabrication of optical components, such as X-ray mirrors and extreme-ultraviolet mask blanks. This study demonstrates that an atomically smooth surface with a sub-Angstrom root-mean-square roughness could be achieved on a SiO2 glass substrate using pure water and Pt as the etching solution and catalyst, respectively. Density functional theory calculations confirmed that the mechanistic pathway was involved in catalyzed hydrolysis. The significant roles of the catalyst were clarified to be the dissociation of water molecules and the stabilization of a meta-stable state, in which a hypervalent silicate state is induced, and the Si-O backbond is elongated and loosened. To confirm the role of the catalyst, the Pt metal was replaced by Au, and the observed drastic difference in the removal rate was attributed to the degree of stabilization of the metastable state.

3.
Appl Phys Lett ; 110(20): 201601, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28611484

ABSTRACT

Chemical etching of SiC was found to proceed in pure water with the assistance of a Pt catalyst. A 4H-SiC (0001) wafer was placed and slid on a polishing pad in pure water, on which a thin Pt film was deposited to give a catalytic nature. Etching of the wafer surface was observed to remove protrusions preferentially by interacting with the Pt film more frequently, thus flattening the surface. In the case of an on-axis wafer, a crystallographically ordered surface was obtained with a straight step-and-terrace structure, the height of which corresponds to that of an atomic bilayer of Si and C. The etching rate depended upon the electrochemical potential of Pt. The vicinal surface was observed at the potential at which the Pt surface was bare. The primary etching mechanism was hydrolysis with the assistance of a Pt catalyst. This method can, therefore, be used as an environmentally friendly and sustainable technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...