Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Eur J Immunol ; 53(4): e2250036, 2023 04.
Article in English | MEDLINE | ID: mdl-36608264

ABSTRACT

Recurrent respiratory papillomatosis (RRP), a rare chronic disease caused primarily by human papillomavirus types 6 and 11, consists of repeated growth of premalignant papillomas in the airway. RRP is characterized by multiple abnormalities in innate and adaptive immunity. Natural killer (NK) cells play important roles in immune surveillance and are part of the innate immune responses that help prevent tumor growth. We identified that papillomas lack classical class I MHC and retain nonclassical class I MHC expression. Moreover, in this study, we have identified and characterized the mechanism that blocks NK cell targeting of papilloma cells. Here, we show for the first time that the PGE2 secreted by papilloma cells directly inhibits NK cells activation/degranulation principally through the PGE2 receptor EP2, and to a lesser extent through EP4 signaling. Thus, papilloma cells have a potent mechanism to block NK cell function that likely supports papilloma cell growth.


Subject(s)
Papilloma , Papillomavirus Infections , Respiratory Tract Infections , Humans , Dinoprostone/metabolism , Killer Cells, Natural
2.
Semin Cancer Biol ; 87: 170-183, 2022 12.
Article in English | MEDLINE | ID: mdl-36402301

ABSTRACT

Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.


Subject(s)
Neoplasms , Papillomavirus Infections , Female , Humans , Papillomavirus Infections/complications , Chemokines , Neoplasms/etiology , Tumor Microenvironment , Carcinogenesis
3.
Front Immunol ; 13: 1011772, 2022.
Article in English | MEDLINE | ID: mdl-36426368

ABSTRACT

Oropharyngeal squamous cell cancer (OPC) accounts for 3% of all cancers and greater than 1.5% of all cancer deaths in the United States, with marked treatment-associated morbidity in survivors. More than 80% of OPC is caused by HPV16. Tumors induced by HPV have been linked to impaired immune functions, with most studies focused on the local tumor microenvironment. Fewer studies have characterized the effects of these tumors on systemic responses in OPC, especially innate responses that drive subsequent adaptive responses, potentially creating feed-back loops favorable to the tumor. Here we report that elevated plasma levels of PGE2 are expressed in half of patients with OPC secondary to overexpression of COX-2 by peripheral blood monocytes, and this expression is driven by IL-1α secreted by the tumors. Monocytes from patients are much more sensitive to the stimulation than monocytes from controls, suggesting the possibility of enhanced immune-modulating feed-back loops. Furthermore, control monocytes pre-exposed to PGE2 overexpress COX-2 in response to IL-1α, simulating responses made by monocytes from some OPC patients. Disrupting the PGE2/IL-1α feed-back loop can have potential impact on targeted medical therapies.


Subject(s)
Cyclooxygenase 2 , Interleukin-1alpha , Monocytes , Oropharyngeal Neoplasms , Humans , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Monocytes/enzymology , Oropharyngeal Neoplasms/metabolism , Prostaglandins E , Tumor Microenvironment , Interleukin-1alpha/metabolism
4.
Cell Signal ; 83: 109994, 2021 07.
Article in English | MEDLINE | ID: mdl-33781846

ABSTRACT

Cells can communicate through the extracellular vesicles (EVs) they secrete. Pathogen associated molecular patterns (PAMPs), alter the biophysical and communicative properties of EVs released from cells, but the functional consequences of these changes are unknown. Characterization of keratinocyte-derived EVs after poly(I:C) treatment (poly(I:C)-EVs) showed slight differences in levels of EV markers TSG101 and Alix, a loss of CD63 and were positive for autophagosome marker LC3b-II and the cytokine IL36γ compared to EVs from unstimulated keratinocytes (control-EVs). Flagellin treatment (flagellin-EVs) led to an EV marker profile like control-EVs but lacked LC3b-II. Flagellin-EVs also lacked IL-36γ despite nearly identical intracellular levels. While poly(I:C) treatment led to the clear emergence of a > 200 nm diameter EV sub-population, these were not found in flagellin-EVs. EV associated IL-36γ colocalized with LC3b-II in density gradient analysis, equilibrating to 1.10 g/mL, indicating a common EV species. Poly(I:C), but not flagellin, induced intracellular vesicles positive for IL-36γ, LC3b-II, Alix and TSG101, consistent with fusion of autophagosomes and multivesicular bodies. Simultaneous rapamycin and flagellin treatment induced similar intracellular vesicles but was insufficient for the release of IL-36γ+/LC3b-II+ EVs. Finally, a qRT-PCR array screen showed eight cytokine/chemokine transcripts were altered (p < 0.05) in monocyte-derived Langerhans cells (LCs) when stimulated with poly(I:C)-EVs while three were altered when LCs were stimulated with flagellin-EVs compared to control-EVs. After independent confirmation, poly(I:C)-EVs upregulated BMP6 (p = 0.035) and flagellin-EVs upregulated CXCL8 (p = 0.005), VEGFA (p = 0.018) and PTGS2 (p = 0.020) compared to control-EVs. We conclude that exogenous signals derived from pathogens can alter keratinocyte-mediated modulation of the local immune responses by inducing changes in the types of EVs secreted and responses in antigen presenting cells.


Subject(s)
Antigen-Presenting Cells/metabolism , Extracellular Vesicles/metabolism , Keratinocytes/metabolism , Poly I-C/pharmacology , Toll-Like Receptors/agonists , Ascorbic Acid , Cells, Cultured , Cholecalciferol , Dehydroepiandrosterone/analogs & derivatives , Nicotinic Acids , Plant Extracts , Toll-Like Receptors/metabolism
5.
Front Immunol ; 11: 336, 2020.
Article in English | MEDLINE | ID: mdl-32210959

ABSTRACT

The micromilieu within respiratory papillomas supports persistent human papillomavirus (HPV) infection and disease recurrence in patients with recurrent respiratory papillomatosis (RRP). These patients show polarized (TH2-/Treg) adaptive immunity in papillomas and blood, enriched immature Langerhans cell (iLC) numbers, and overexpression of cyclooxygenase-2/prostaglandin E2 (PGE2) in the upper airway. Blood monocyte-derived, and tissue-derived iLCs from RRP patients and controls were now studied to more fully understand innate immune dysregulation in RRP. Patients' monocytes generated fewer iLCs than controls, due to a reduced fraction of classical monocytes that generated most but not all the iLCs. Prostaglandin E2, which was elevated in RRP plasma, reduced monocyte-iLC differentiation from controls to the levels of RRP patients, but had no effect on subsequent iLC maturation. Cytokine/chemokine responses by iLCs from papillomas, foreskin, and abdominal skin differed significantly. Freshly derived tissue iLCs expressed low CCL-1 and high CCL-20 mRNAs and were unresponsive to IL-36γ stimulation. Papilloma iLCs uniquely expressed IL-36γ at baseline and expressed CCL1 when cultured overnight outside their immunosuppressive microenvironment without additional stimulation. We conclude that monocyte/iLC innate immunity is impaired in RRP, in part due to increased PGE2 exposure in vivo. The immunosuppressive papilloma microenvironment likely alters iLC responses, and vice versa, supporting TH2-like/Treg HPV-specific adaptive immunity in RRP.


Subject(s)
Alphapapillomavirus/physiology , Langerhans Cells/immunology , Papillomavirus Infections/immunology , Respiratory Tract Infections/immunology , Skin/virology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Humans , Immune Tolerance , Immunity, Innate , Neoplasm Recurrence, Local , Precancerous Conditions , Skin/pathology , Tumor Microenvironment
6.
Mol Med ; 24(1): 23, 2018 05 16.
Article in English | MEDLINE | ID: mdl-30134802

ABSTRACT

BACKGROUND: Stratified human keratinocytes (SHKs) are an essential part of mucosal innate immune response that modulates adaptive immunity to microbes encountered in the environment. The importance of these SHKs in mucosal integrity and development has been well characterized, however their regulatory immunologic role at different mucosal sites, has not. In this study we compared the immune gene expression of SHKs from five different anatomical sites before and after HPV16 transfection using microarray analyses. METHODS: Individual pools of human keratinocytes from foreskin, cervix, vagina, gingiva, and tonsils (HFKs, HCKs, HVKs, HGKs and HTLKs) were prepared. Organotypic (raft) cultures were established for both normal and HPV16 immortalized HFKs, HCKs, HVKs, HGKs and HTLKs lines which stably maintained episomal HPV16 DNA. Microarray analysis was carried out using the HumanHT-12 V4 gene chip (Illumina). Immune gene expression profiles were obtained by global gene chip (GeneSifter) and Ingenuity pathway analysis (IPA) for each individual site, with or without HPV16 transfection. RESULTS: We examined site specific innate immune response gene expression in SHKs from all five different anatomical sites before and after HPV16 transfection. We observed marked differences in SHK immune gene repertoires within and between mucosal tracts before HPV 16 infection. In addition, we observed additional changes in SHKs immune gene repertoire patterns when these SHKs were productively transfected with HPV16. Some immune response genes were similarly expressed by SHKs from different sites. However, there was also variable expression of non-immune response genes, such as keratin genes, by the different SHKs. CONCLUSIONS: Our results suggest that keratinocytes from different anatomical sites are likely hard wired in their innate immune responses, and that these immune responses are unique depending on the anatomical site from which the SHKs were derived. These observations may help explain why select HPV types predominate at different mucosal sites, cause persistent infection at these sites, and on occasion, lead to HPV induced malignant and benign tumor development.


Subject(s)
Human papillomavirus 16/genetics , Keratinocytes/immunology , Transcriptome/immunology , Cervix Uteri , Female , Foreskin , Gingiva , Humans , Immunity, Innate , Male , Microarray Analysis , Palatine Tonsil , Papillomavirus Infections/genetics , Papillomavirus Infections/immunology , Signal Transduction , Transfection , Vagina
7.
Virology ; 499: 82-90, 2016 12.
Article in English | MEDLINE | ID: mdl-27639574

ABSTRACT

Human papillomavirus (HPV) is well recognized as a causative agent for anogenital and oropharyngeal cancers, however, the biology of HPV infection at different mucosal locations, specifically the oral cavity, is not well understood. Importantly, it has yet to be determined if oral tissues are permissive for HPV infection and replication. We investigated for the first time the titers, infectivity, and maturation of HPV16 in oral epithelial versus genital epithelial tissue. We show that infectious HPV16 virions can be produced in oral tissue. This demonstrates, for the first time, that infectious virus could be spread via the oral cavity. HPV16 derived from oral tissue utilize a tissue-spanning redox gradient that facilitates the maturation of virions over time. Maturation is manifested by virion stability and increased susceptibility to neutralization with anti-HPV16 L1 antibodies. However, susceptibility to neutralization by anti-HPV16 L2 specific antibodies decreases during the maturation of HPV16 virions in oral tissue.


Subject(s)
Epithelium/virology , Foreskin/virology , Human papillomavirus 16/physiology , Palatine Tonsil/virology , Papillomavirus Infections/virology , Virus Replication , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Capsid Proteins/immunology , Cell Line, Transformed , Cells, Cultured , Humans , Keratinocytes/virology , Male , Mice , Neutralization Tests , Oxidation-Reduction , Papillomavirus Infections/complications , Papillomavirus Infections/immunology , Virion , Virus Assembly
8.
Cancer Biol Ther ; 15(8): 1013-28, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24834917

ABSTRACT

We have previously reported that infection with the non-pathogenic, tumor suppressive, wild-type adeno-associated virus type 2 (AAV2) inhibited proliferation of breast cancer-derived lines representing both weakly invasive (MCF-7 and MDA-MB-468), as well as aggressive (MDA-MB-231) cancer types. AAV2-induced death occurred via targeting pathways of apoptosis and necrosis. In contrast, normal human mammary epithelial cells were unaffected upon AAV2 infection. The current study characterizes AAV2 infection and subsequent death of the highly aggressive, triple-negative (ER(-)/PR(-)/HER2(-)) MDA-MB-435 cell line derived from metastatic human breast carcinoma. Monolayer MDA-MB-435 cultures infected with AAV2 underwent complete apoptotic cell death characterized by activation of caspases -7, -8, and -9 and PARP cleavage. Death was further correlated with active AAV2 genome replication and differential expression of viral non-structural proteins Rep78 and Rep52. Cell death coincided with increased entry into S and G 2 phases, upregulated expression of the proliferation markers Ki-67 and the monomeric form of c-Myc. Expression of the p16(INK4), p27(KIP1), p21(WAF1), and p53 tumor suppressors was downregulated, indicating marked S phase progression, but sharply contrasted with hypo-phosphorylated pRb. In parallel, MDA-MB-435 breast tumor xenografts which received intratumoral injections of AAV2 were growth retarded, displayed extensive areas of necrosis, and stained positively for c-Myc as well as cleaved caspase-8. Therefore, AAV2 induced death of MDA-MB-435 xenografts was modulated through activation of caspase-regulated death pathways in relation to signals for cell cycle controls. Our findings provide foundational studies for development of novel AAV2 based therapeutics for treating aggressive, triple-negative breast cancer types.


Subject(s)
Breast Neoplasms/therapy , Dependovirus , Oncolytic Viruses , Animals , Apoptosis , Breast Neoplasms/pathology , Caspase 8/metabolism , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins/metabolism , Female , Genome, Viral , Heterografts , Humans , Ki-67 Antigen/metabolism , Mice, Nude , Necrosis , Oncolytic Virotherapy , Proto-Oncogene Proteins c-myc/metabolism , Viral Proteins/metabolism
9.
Environ Res ; 131: 39-49, 2014 May.
Article in English | MEDLINE | ID: mdl-24641832

ABSTRACT

This study investigates largely unexplored physiological/biochemical strategies adopted by salt marsh macrophyte Halimione portulacoides (L.) Aellen for its adaptation/tolerance to environmental mercury (Hg)-exposure in a coastal lagoon prototype. To this end, a battery of damage (hydrogen peroxide, H2O2; thiobarbituric acid reactive substances, TBARS; electrolyte leakage, EL; reactive carbonyls; osmolyte, proline) and defense [ascorbate peroxidase, APX; catalase, CAT; glutathione peroxidase, GPX; glutathione sulfo-transferase, GST; glutathione reductase, GR; reduced and oxidized glutathione (GSH and GSSG, respectively), and GSH/GSSG ratio] biomarkers, and polypeptide patterns were assessed in H. portulacoides roots and leaves at reference (R) and the sites with highest (L1), moderate (L2) and the lowest (L3) Hg-contamination gradients. Corresponding to the Hg-burdens, roots and leaves exhibited a differential modulation of damage- and defense-endpoints and polypeptide-patterns. Roots exhibiting the highest Hg-burden (at L3) failed to maintain a coordination among enzymatic-defense endpoint responses which resulted into increased oxidation of reduced glutathione (GSH) pool, lowest GSH/GSSG (oxidized) ratio and partial H2O2-metabolism. In contrast, the highest Hg-burden exhibiting leaves (at L1) successfully maintained a coordination among enzymatic-defense endpoints responses which resulted into decreased GSH-oxidation, enhanced reduced GSH pool and GSH/GSSG ratio and lower extent of damage. Additionally, increased leaf-carotenoids content with increasing Hg-burden implies its protective function. H. portulacoides leaf-polypeptides did not respond as per its Hg-burden but the roots did. Overall, the physiological/biochemical characterization of below (roots)- and above (leaves)-ground organs (studied in terms of damage and defense endpoints, and polypeptides modulation) revealed the adaptive responses of H. portulacoides to environmental Hg at whole plant level which cumulatively helped this plant to sustain and execute its Hg-remediation potential.


Subject(s)
Antioxidants/metabolism , Chenopodiaceae/metabolism , Mercury/metabolism , Adaptation, Physiological , Environmental Exposure , Oxidative Stress , Peptides/metabolism , Pigmentation , Plant Leaves/metabolism , Plant Roots/metabolism , Proline/metabolism , Salt-Tolerant Plants/metabolism
10.
Mol Cancer ; 10: 97, 2011 Aug 09.
Article in English | MEDLINE | ID: mdl-21827643

ABSTRACT

BACKGROUND: In normal cells proliferation and apoptosis are tightly regulated, whereas in tumor cells the balance is shifted in favor of increased proliferation and reduced apoptosis. Anticancer agents mediate tumor cell death via targeting multiple pathways of programmed cell death. We have reported that the non-pathogenic, tumor suppressive Adeno-Associated Virus Type 2 (AAV2) induces apoptosis in Human Papillomavirus (HPV) positive cervical cancer cells, but not in normal keratinocytes. In the current study, we examined the potential of AAV2 to inhibit proliferation of MCF-7 and MDA-MB-468 (both weakly invasive), as well as MDA-MB-231 (highly invasive) human breast cancer derived cell lines. As controls, we used normal human mammary epithelial cells (nHMECs) isolated from tissue biopsies of patients undergoing breast reduction surgery. RESULTS: AAV2 infected MCF-7 line underwent caspase-independent, and MDA-MB-468 and MDA-MB-231 cell lines underwent caspase-dependent apoptosis. Death of MDA-MB-468 cells was marked by caspase-9 activation, whereas death of MDA-MB-231 cells was marked by activation of both caspase-8 and caspase-9, and resembled a mixture of apoptotic and necrotic cell death. Cellular demise was correlated with the ability of AAV2 to productively infect and differentially express AAV2 non-structural proteins: Rep78, Rep68 and Rep40, dependent on the cell line. Cell death in the MCF-7 and MDA-MB-231 lines coincided with increased S phase entry, whereas the MDA-MB-468 cells increasingly entered into G2. AAV2 infection led to decreased cell viability which correlated with increased expression of proliferation markers c-Myc and Ki-67. In contrast, nHMECs that were infected with AAV2 failed to establish productive infection or undergo apoptosis. CONCLUSION: AAV2 regulated enrichment of cell cycle check-point functions in G1/S, S and G2 phases could create a favorable environment for Rep protein expression. Inherent Rep associated endonuclease activity and AAV2 genomic hair-pin ends have the potential to induce a cellular DNA damage response, which could act in tandem with c-Myc regulated/sensitized apoptosis induction. In contrast, failure of AAV2 to productively infect nHMECs could be clinically advantageous. Identifying the molecular mechanisms of AAV2 targeted cell cycle regulation of death inducing signals could be harnessed for developing novel therapeutics for weakly invasive as well as aggressive breast cancer types.


Subject(s)
Apoptosis/physiology , Breast Neoplasms/pathology , Carcinoma/pathology , Caspases/physiology , Dependovirus/physiology , Mammary Glands, Human/metabolism , Parvoviridae Infections/pathology , Breast Neoplasms/complications , Breast Neoplasms/metabolism , Breast Neoplasms/virology , Carcinoma/complications , Carcinoma/metabolism , Carcinoma/virology , Caspases/metabolism , Cell Line, Tumor , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dependovirus/genetics , Female , Gene Expression Regulation, Viral , Genome, Viral/physiology , Humans , Mammary Glands, Human/pathology , Mammary Glands, Human/physiopathology , Mammary Glands, Human/virology , Parvoviridae Infections/complications , Parvoviridae Infections/metabolism , Transduction, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/physiology
11.
J Hazard Mater ; 186(2-3): 1520-6, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21216094

ABSTRACT

Sesbania drummondii seedlings were grown in a medium to which lead (Pb), copper (Cu), nickel (Ni) and zinc (Zn) were added singly and in combinations in order to assess the effects of metal interactions on seedling growth, metal accumulation and anti-oxidative system. S. drummondii growth was significantly inhibited with metal treatments. S. drummondii accumulated substantially higher concentrations of metals in the roots than shoots. The uptake of metals followed the order Pb>Cu>Zn>Ni in roots and Pb>Zn>Cu>Ni in shoots. In addition, uptake of a single metal by S. drummondii was affected by the presence of a second metal, suggesting an antagonistic effect or competition between metals at the plant uptake site. A significant increase in both enzymatic [superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR)] and non-enzymatic (glutathione) antioxidant was observed in the S. drummondii seedlings exposed to different metal treatments. The enhancement in enzyme activities followed the order of Cu>Ni>Pb>Zn. However, compared to the effect of individual metal, metals in combination increased the enzyme activities to varying degrees.


Subject(s)
Antioxidants/metabolism , Metals, Heavy/pharmacology , Metals/metabolism , Sesbania/growth & development , Sesbania/metabolism , Ascorbate Peroxidases , Biomass , Copper/metabolism , Environmental Restoration and Remediation , Glutathione/metabolism , Glutathione Reductase/metabolism , Lead/metabolism , Nickel/metabolism , Peroxidases/metabolism , Photosynthesis/drug effects , Sesbania/drug effects , Superoxide Dismutase/metabolism , Zinc/metabolism
12.
Antivir Ther ; 15(2): 253-65, 2010.
Article in English | MEDLINE | ID: mdl-20386081

ABSTRACT

BACKGROUND: HIV-positive patients taking antiretroviral drugs, including protease inhibitors, have shown a significant increase in the development of oral complications; these complications are a major health issue for affected patients. The effect of these drugs on oral epithelium growth and differentiation is presently unknown. In this study, we explore for the first time the effect of the HIV protease inhibitor amprenavir on gingival epithelium growth and differentiation. METHODS: Organotypic (raft) cultures of gingival keratinocytes were established and the raft cultures treated with a range of amprenavir concentrations. Haematoxylin and eosin staining was performed to examine the effect of amprenavir on gingival epithelium growth and stratification. The raft cultures were also immunohistochemically analysed to determine the effect of amprenavir on the expression of key differentiation and proliferation markers, including cytokeratins, proliferating cell nuclear antigen (PCNA) and cyclin A. RESULTS: Amprenavir severely inhibited the growth of gingival epithelium when the drug was present throughout the growth period of the tissue. When the drug was added at day 8, amprenavir treatment altered the proliferation and differentiation of gingival keratinocytes. Expression of the cytokeratins 5, 14, 6 and 10, PCNA and cyclin A was increased; their expression pattern was also altered over time in treated rafts. Biochemically, the tissue exhibited characteristics of increased proliferation in the suprabasal layers of amprenavir-treated tissue. CONCLUSIONS: Our results suggest that amprenavir treatment deregulates the cell cycle/proliferation and differentiation pathways, resulting in abnormal epithelial repair and proliferation. Our system could be developed as a potential model for studying the effects of highly active antiretroviral therapy in vitro.


Subject(s)
Carbamates/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Epithelium/drug effects , Gingiva/drug effects , HIV Protease Inhibitors/pharmacology , Sulfonamides/pharmacology , 3T3 Cells , Animals , Antiretroviral Therapy, Highly Active , Cells, Cultured , Coculture Techniques , Fibroblasts , Furans , Gingiva/cytology , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Mice , Organ Specificity
13.
J Virol ; 84(9): 4630-45, 2010 May.
Article in English | MEDLINE | ID: mdl-20181698

ABSTRACT

Epidemiological studies suggest that human papillomavirus (HPV)-infected women who smoke face an increased risk for developing cervical cancer. We have previously reported that exposure of HPV-positive organotypic cultures to benzo[a]pyrene (BaP), a major carcinogen in cigarette smoke, resulted in enhanced viral titers. Since BaP is known to deregulate multiple pathways of cellular proliferation, enhanced virion synthesis could result from carcinogen/host cell interaction. Here, we report that BaP-mediated upregulation of virus synthesis is correlated to an altered balance between cell cycle-specific cyclin-dependent kinase (CDK) activity profile compared with controls. Specifically, BaP treatment increased accumulation of hyperphosphorylated retinoblastoma protein (pRb) which coincided with increased cdc2/CDK1 kinase activity, but which further conflicted with the simultaneous upregulation of CDK inhibitors p16(INK4) and p27(KIP1), which normally mediate pRb hypophosphorylation. In contrast, p21(WAF1) and p53 levels remained unchanged. Under these conditions, CDK6 and CDK2 kinase activities were decreased, whereas CDK4 kinase activity remained unchanged. The addition of purvalanol A, a specific inhibitor of CDK1 kinase, to BaP-treated cultures, resulted in the production of noninfectious HPV type 31b (HPV31b) particles. In contrast, infectivity of control virus was unaffected by purvalanol A treatment. BaP targeting of CDK1 occurred independently of HPV status, since BaP treatment also increased CDK1 activity in tissues derived from primary keratinocytes. Our data indicate that HPV31b virions synthesized in the presence of BaP were dependent on BaP-mediated alteration in CDK1 kinase activity for maintaining their infectivity.


Subject(s)
Benzo(a)pyrene/pharmacology , Carcinogens/pharmacology , Cyclin B/metabolism , Enzyme Inhibitors/pharmacology , Papillomaviridae/physiology , Virus Replication , CDC2 Protein Kinase , Cell Line , Cyclin-Dependent Kinases , Female , Humans , Phosphorylation , Retinoblastoma Protein/metabolism
14.
Environ Pollut ; 153(1): 29-36, 2008 May.
Article in English | MEDLINE | ID: mdl-18272272

ABSTRACT

Lead (Pb) accumulation in Sesbania drummondii shoots was enhanced by 654 and 415% in the presence of 100 microM IAA and 100 microM NAA, respectively, compared to control plants (Pb alone). However, when IAA or NAA was added along with EDTA, Pb accumulation further increased in shoots by 1349% and 1252%, respectively. Scanning electron microscopic observations revealed that Pb particles in both leaf and stem of Pb+EDTA+IAA and Pb+EDTA+NAA treated plants were concentrated in the region of vascular bundles. In root tissue, Pb particles were present between epidermis to stele region. Plant growth in both treatments (Pb+100 microM IAA and Pb+100 microM NAA) was comparable to control plants; however, it was significantly inhibited in the treatments containing Pb+EDTA and EDTA at concentrations of 10 microM of IAA or NAA. Moreover, the photosynthetic efficiency and strength of the treated plants were not affected in the presence of IAA or NAA and EDTA.


Subject(s)
Lead/metabolism , Plant Growth Regulators/pharmacology , Sesbania/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Biological Transport , Chelating Agents/pharmacology , Ecology/methods , Edetic Acid/pharmacology , Indoleacetic Acids/pharmacology , Microscopy, Electron, Scanning , Nitrilotriacetic Acid/pharmacology , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plant Roots/ultrastructure , Plant Shoots/metabolism , Plant Shoots/ultrastructure , Sesbania/growth & development , Sesbania/ultrastructure
15.
Plant Physiol Biochem ; 44(10): 590-5, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17070690

ABSTRACT

The effect of mercury (Hg) on the growth and the response of antioxidative systems have been investigated in Sesbania cell cultures to determine the tolerance limits and the mechanisms of metal (Hg) tolerance in plant cells. Cell cultures of Sesbania were developed in different concentrations (0-50 microM) of mercury. Cultures tolerated Hg up to a concentration of 40 microM and showed an increase in the fresh weight growth by 620% in 3 weeks. The levels of antioxidants: glutathione (GSH) and non-protein thiols (NPSH) and the activities of antioxidative enzymes: superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) were influenced by Hg treatments. The contents of GSH, NPSH and GSH/GSSG ratio increased up to a concentration of 40 muM Hg and then severely declined at 50 microM Hg. The activities of antioxidative enzymes, SOD, APX and GR followed the same trends as antioxidants, first increased up to a concentration of 40 muM Hg and then declined in the presence of 50 microM Hg.


Subject(s)
Antioxidants/metabolism , Mercury/pharmacology , Sesbania/cytology , Sesbania/metabolism , Cells, Cultured , Glutathione/metabolism , Sesbania/drug effects , Sulfhydryl Compounds/metabolism , Superoxide Dismutase/metabolism
16.
Chemosphere ; 65(4): 591-8, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16564071

ABSTRACT

The accumulation of mercury and its effect on growth, photosynthesis and antioxidative responses were studied in Sesbania drummondii seedlings. Mercury concentration in shoots as well as in the roots increased with increasing Hg concentrations in the growth solution. The accumulation of Hg was more in roots than shoots. At 100 mg l-1 Hg concentration, shoots accumulated 998 mg Hg kg -1 dry weight (dw) while roots accumulated 41,403 mg Hg kg-1 dw. Seedlings growth was not significantly affected at lower concentrations of Hg. A concentration of 100 mg l-1 Hg inhibited growth by 36.8%, with respect to control. Photosynthetic activity was assessed by measuring chlorophyll a fluorescence by determination of Fv/Fm and Fv/Fo values. Photosynthetic integrity was not affected up to 50 mg l-1 Hg concentration, however, concentrations higher than 50 mg l-1 affected photosynthetic integrity. Sesbania responded to Hg induced oxidative stress by modulating non-enzymatic antioxidants [glutathione (GSH) and non-protein thiols (NPSH)] and enzymatic antioxidants: superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR). Glutathione content and GSH/GSSG ratio increased up to a concentration of 50 mg l-1 while slight down at 100 mg l-1 Hg. The content of NPSH significantly increased with increasing Hg concentrations in the growth medium. The activities of antioxidative enzymes, SOD, APX and GR followed the same trends as antioxidants first increased up to a concentration of 50 mg l-1 Hg and then slight decreased. The results of present study suggest that Sesbania plants were able to accumulate and tolerate Hg induced stress using an effective antioxidative defense mechanisms.


Subject(s)
Antioxidants/metabolism , Environmental Pollutants , Mercury , Photosynthesis/drug effects , Sesbania , Ascorbate Peroxidases , Biomass , Environmental Pollutants/pharmacokinetics , Environmental Pollutants/toxicity , Glutathione Reductase/metabolism , Mercury/pharmacokinetics , Mercury/toxicity , Peroxidases/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/physiology , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/physiology , Seedlings/growth & development , Seedlings/metabolism , Seedlings/physiology , Sesbania/growth & development , Sesbania/metabolism , Sesbania/physiology , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...