Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Seizure ; 115: 50-58, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183828

ABSTRACT

PURPOSE: Epilepsy is a prevalent neurological disorder characterised by repetitive seizures. It is categorised into three types: generalised epilepsy (GE), focal epilepsy (FE), and combined generalised and focal epilepsy. Correctly subtyping the epilepsy is important to select appropriate treatments. The types are mainly determined (i.e., diagnosed) by their semiologies supported by clinical examinations, such as electroencephalography and magnetoencephalography (MEG). Although these examinations are traditionally based on visual inspections of interictal epileptic discharges (IEDs), which are not always visible, alternative analyses have been anticipated. We examined if resting-state brain activities can distinguish patients with GE, which would help us to diagnose the type of epilepsy. METHODS: The 5 min resting-state brain activities acquired using MEG were obtained retrospectively from 15 patients with GE. The cortical source of the activities was estimated at each frequency band from delta to high-frequency oscillation (HFO). These estimated activities were compared with reference datasets from 133 healthy individuals and control data from 29 patients with FE. RESULTS: Patients with GE showed larger theta in the occipital, alpha in the left temporal, HFO in the rostral deep regions, and smaller HFO in the caudal ventral regions. Their area under the curves of the receiver operating characteristic curves was around 0.8-0.9. The distinctive pattern was not found for data from FE. CONCLUSION: Patients with GE show distinctive resting-state brain activity, which could be a potential biomarker and used complementarily to classical analysis based on the visual inspection of IEDs.


Subject(s)
Epilepsies, Partial , Epilepsy, Generalized , Epilepsy , Humans , Brain , Retrospective Studies , Magnetic Resonance Imaging , Epilepsy, Generalized/diagnosis , Magnetoencephalography , Electroencephalography , Brain Mapping
2.
Epilepsia ; 65(1): 46-56, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37347512

ABSTRACT

OBJECTIVES: Although hemispheric surgeries are among the most effective procedures for drug-resistant epilepsy (DRE) in the pediatric population, there is a large variability in seizure outcomes at the group level. A recently developed HOPS score provides individualized estimation of likelihood of seizure freedom to complement clinical judgement. The objective of this study was to develop a freely accessible online calculator that accurately predicts the probability of seizure freedom for any patient at 1-, 2-, and 5-years post-hemispherectomy. METHODS: Retrospective data of all pediatric patients with DRE and seizure outcome data from the original Hemispherectomy Outcome Prediction Scale (HOPS) study were included. The primary outcome of interest was time-to-seizure recurrence. A multivariate Cox proportional-hazards regression model was developed to predict the likelihood of post-hemispheric surgery seizure freedom at three time points (1-, 2- and 5- years) based on a combination of variables identified by clinical judgment and inferential statistics predictive of the primary outcome. The final model from this study was encoded in a publicly accessible online calculator on the International Network for Epilepsy Surgery and Treatment (iNEST) website (https://hops-calculator.com/). RESULTS: The selected variables for inclusion in the final model included the five original HOPS variables (age at seizure onset, etiologic substrate, seizure semiology, prior non-hemispheric resective surgery, and contralateral fluorodeoxyglucose-positron emission tomography [FDG-PET] hypometabolism) and three additional variables (age at surgery, history of infantile spasms, and magnetic resonance imaging [MRI] lesion). Predictors of shorter time-to-seizure recurrence included younger age at seizure onset, prior resective surgery, generalized seizure semiology, FDG-PET hypometabolism contralateral to the side of surgery, contralateral MRI lesion, non-lesional MRI, non-stroke etiologies, and a history of infantile spasms. The area under the curve (AUC) of the final model was 73.0%. SIGNIFICANCE: Online calculators are useful, cost-free tools that can assist physicians in risk estimation and inform joint decision-making processes with patients and families, potentially leading to greater satisfaction. Although the HOPS data was validated in the original analysis, the authors encourage external validation of this new calculator.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Hemispherectomy , Spasms, Infantile , Child , Humans , Hemispherectomy/methods , Spasms, Infantile/surgery , Retrospective Studies , Fluorodeoxyglucose F18 , Treatment Outcome , Epilepsy/diagnostic imaging , Epilepsy/surgery , Seizures/diagnosis , Seizures/etiology , Seizures/surgery , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Magnetic Resonance Imaging , Electroencephalography
3.
Epilepsia ; 62(11): 2707-2718, 2021 11.
Article in English | MEDLINE | ID: mdl-34510448

ABSTRACT

OBJECTIVE: This study was undertaken to determine whether the vertical parasagittal approach or the lateral peri-insular/peri-Sylvian approach to hemispheric surgery is the superior technique in achieving long-term seizure freedom. METHODS: We conducted a post hoc subgroup analysis of the HOPS (Hemispheric Surgery Outcome Prediction Scale) study, an international, multicenter, retrospective cohort study that identified predictors of seizure freedom through logistic regression modeling. Only patients undergoing vertical parasagittal, lateral peri-insular/peri-Sylvian, or lateral trans-Sylvian hemispherotomy were included in this post hoc analysis. Differences in seizure freedom rates were assessed using a time-to-event method and calculated using the Kaplan-Meier survival method. RESULTS: Data for 672 participants across 23 centers were collected on the specific hemispherotomy approach. Of these, 72 (10.7%) underwent vertical parasagittal hemispherotomy and 600 (89.3%) underwent lateral peri-insular/peri-Sylvian or trans-Sylvian hemispherotomy. Seizure freedom was obtained in 62.4% (95% confidence interval [CI] = 53.5%-70.2%) of the entire cohort at 10-year follow-up. Seizure freedom was 88.8% (95% CI = 78.9%-94.3%) at 1-year follow-up and persisted at 85.5% (95% CI = 74.7%-92.0%) across 5- and 10-year follow-up in the vertical subgroup. In contrast, seizure freedom decreased from 89.2% (95% CI = 86.3%-91.5%) at 1-year to 72.1% (95% CI = 66.9%-76.7%) at 5-year to 57.2% (95% CI = 46.6%-66.4%) at 10-year follow-up for the lateral subgroup. Log-rank test found that vertical hemispherotomy was associated with durable seizure-free progression compared to the lateral approach (p = .01). Patients undergoing the lateral hemispherotomy technique had a shorter time-to-seizure recurrence (hazard ratio = 2.56, 95% CI = 1.08-6.04, p = .03) and increased seizure recurrence odds (odds ratio = 3.67, 95% CI = 1.05-12.86, p = .04) compared to those undergoing the vertical hemispherotomy technique. SIGNIFICANCE: This pilot study demonstrated more durable seizure freedom of the vertical technique compared to lateral hemispherotomy techniques. Further studies, such as prospective expertise-based observational studies or a randomized clinical trial, are required to determine whether a vertical approach to hemispheric surgery provides superior long-term seizure outcomes.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Hemispherectomy , Child , Drug Resistant Epilepsy/surgery , Epilepsy/surgery , Hemispherectomy/methods , Humans , Pilot Projects , Prospective Studies , Retrospective Studies , Seizures/surgery , Treatment Outcome
4.
Epilepsia ; 62(5): 1064-1073, 2021 05.
Article in English | MEDLINE | ID: mdl-33713438

ABSTRACT

OBJECTIVE: To develop and validate a model to predict seizure freedom in children undergoing cerebral hemispheric surgery for the treatment of drug-resistant epilepsy. METHODS: We analyzed 1267 hemispheric surgeries performed in pediatric participants across 32 centers and 12 countries to identify predictors of seizure freedom at 3 months after surgery. A multivariate logistic regression model was developed based on 70% of the dataset (training set) and validated on 30% of the dataset (validation set). Missing data were handled using multiple imputation techniques. RESULTS: Overall, 817 of 1237 (66%) hemispheric surgeries led to seizure freedom (median follow-up = 24 months), and 1050 of 1237 (85%) were seizure-free at 12 months after surgery. A simple regression model containing age at seizure onset, presence of generalized seizure semiology, presence of contralateral 18-fluoro-2-deoxyglucose-positron emission tomography hypometabolism, etiologic substrate, and previous nonhemispheric resective surgery is predictive of seizure freedom (area under the curve = .72). A Hemispheric Surgery Outcome Prediction Scale (HOPS) score was devised that can be used to predict seizure freedom. SIGNIFICANCE: Children most likely to benefit from hemispheric surgery can be selected and counseled through the implementation of a scale derived from a multiple regression model. Importantly, children who are unlikely to experience seizure control can be spared from the complications and deficits associated with this surgery. The HOPS score is likely to help physicians in clinical decision-making.


Subject(s)
Drug Resistant Epilepsy/surgery , Hemispherectomy , Treatment Outcome , Age of Onset , Child , Child, Preschool , Cohort Studies , Drug Resistant Epilepsy/pathology , Drug Resistant Epilepsy/physiopathology , Female , Humans , Infant , Logistic Models , Male , Prognosis , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...