Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(40): 6040-6043, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37185589

ABSTRACT

Methanol (CH3OH) oxidation offers a promising avenue for transitioning to clean energy, particularly in the field of direct methanol fuel cells (DMFCs). However, the development of efficient and cost-effective catalysts for the methanol oxidation reaction (MOR) remains a critical challenge. Herein, we report the exceptional electrocatalytic activity and stability of Ni3Sn4 toward MOR in acidic media, achieving a performance comparable to that of commercial Pt/C catalysts. Our catalyst design incorporates Earth-abundant Ni and Sn elements, resulting in a material that is 1800 times more cost-effective than Pt/C. Density functional theory (DFT) modeling substantiates our experimental findings, shedding light on the favorable reaction mechanisms and kinetics on the Ni3Sn4 surface. Additionally, the as-synthesized Ni3Sn4 electrocatalyst demonstrates commendable durability, maintaining its electrocatalytic activity even after prolonged exposure to harsh acidic conditions.

2.
J Phys Chem Lett ; 14(13): 3120-3125, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36952263

ABSTRACT

Nonmagnetic chiral crystals are a new class of systems hosting Kramers-Weyl Fermions, arising from the combination of structural chirality, spin-orbit coupling (SOC), and time-reversal symmetry. These materials exhibit nontrivial Fermi surfaces with SOC-induced Chern gaps over a wide energy range, leading to exotic transport and optical properties. In this study, we investigate the electronic structure and transport properties of CdAs2, a newly reported chiral material. We use synchrotron-based angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT) to determine the Fermiology of the (110)-terminated CdAs2 crystal. Our results, together with complementary magnetotransport measurements, suggest that CdAs2 is a promising candidate for novel topological properties protected by the structural chirality of the system. Our work sheds light on the details of the Fermi surface and topology for this chiral quantum material, providing useful information for engineering novel spintronic and optical devices based on quantized chiral charges, negative longitudinal magnetoresistance, and nontrivial Chern numbers.

3.
Sci Rep ; 13(1): 2165, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36750635

ABSTRACT

Lanthanide (Ln) co-doped transition metal (TM) upconversion (UC) co-doped systems are being intensively investigated for their exciting applications in photonics, bioimaging, and luminescence thermometry. The presence of TM, such as Mo6 + /W6 +, Mn2 +, or Fe3 + determines significant changes in Ln UC emission, such as intensity enhancement, colour modulation, and even the alteration of the photon order. The current mechanism assumes a ground-state absorption/excited-state absorption (ESA/GSA) in TM-Yb dimer followed by direct energy transfer to Er/Tm excited states. We revisit this mechanism by addressing two issues that remain ignored: a dynamical approach to the investigation of the upconversion mechanism and the intrinsic chemical complexity of co-doped TM, Ln systems. To this aim, we employ a pulsed, excitation variable laser across a complete set of UC measurements, such as the emission and excitation spectra and emission decays and analyze multiple grains with transmission electron microscopy (TEM). In the Mo co-doped garnet, the results sustain the co-existence of Mo-free garnet and Mo oxide impurity. In this Mo oxide, the Er upconversion emission properties are fully explained by a relatively efficient sequential Yb to Er upconversion process, with no contribution from Yb-Mo dimer sensitization.

4.
J Phys Chem Lett ; 14(5): 1334-1342, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36727689

ABSTRACT

Hydrogen production from methanol decomposition to syngas (H2 + CO) is a promising alternative route for clean energy transition. One major challenge is related to the quest for stable, cost-effective, and selective catalysts operating below 400 °C. We illustrate an investigation of the surface reactivity of a Ni3Sn4 catalyst working at 250 °C, by combining density functional theory, operando X-ray absorption spectroscopy, and high-resolution transmission electron microscopy. We discovered that the catalytic reaction is driven by surface tin-oxide phases, which protects the underlying Ni atoms from irreversible chemical modifications, increasing the catalyst durability. Moreover, we found that Sn content plays a key role in enhancing the H2 selectivity, with respect to secondary products such as CO2. These findings open new perspectives for the engineering of scalable and low-cost catalysts for hydrogen production.

5.
Methods Appl Fluoresc ; 8(3): 035005, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32320952

ABSTRACT

In recent years, luminescence nanothermometers with near infrared light (NIR) emission excited in the NIR range have attracted much attention due to their potential in bio applications. Here, we propose a new nanothermometer based on triple doped 1%Ho, 1%Er, 1%Yb - Y2O3 that operates in the second and third biological windows around 1200 and 1530 nm under pulsed excitation at 905 nm. The NIR emissions were analysed in the temperature range of 298-473 K in terms of intensity, shape and dynamics. The nanothermometer performances were described using the luminescent intensity ratio (LIR) corresponding to the 5I6-5I8 and 4I13/2-4I15/2 emissions transitions of Ho and Er, respectively. A maximum relative sensitivity of 1.5% K-1 was achieved at 309 K, which is among the highest five values reported so far for the NIR to NIR downconversion nanothermometers. The thermometer performance for biological application was assessed in terms of nanothermometer reliability and stability as well as emission shape changes induced by water and custom designed optical phantoms. Combination between use of pulsed excitation and identification of Ln doping configuration offering both excitation and emission in the biological windows represent a solid approach that can be easily translated to other hosts to develop a new class of near infrared nanothermometers.


Subject(s)
Spectroscopy, Near-Infrared/methods , Yttrium/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...