Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 58(13): 8720-8734, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31247879

ABSTRACT

Current methods for the extraction of rhodium carry the highest carbon footprint and worst pollution metrics of all of the elements used in modern technological applications. Improving upon existing methods is made difficult by the limited understanding of the molecular-level chemistry occurring in extraction processes, particularly in the hydrometallurgical separation step. While many of the precious metals can be separated by solvent extraction, there currently exist no commercial extractants for Rh. This is due to its complicated mixed speciation upon leaching into hydrochloric acid, which gives rise to difficulties in designing effective reagents for solvent extraction. Herein we show that the diamidoamine reagent N- n-hexylbis( N-methyl- N- n-octylethylamide)amine transports Rh(III) from aqueous HCl into an organic phase as the monoaquated dianion [RhCl5(H2O)]2- through the formation of an outer-sphere assembly; this assembly has been characterized by experimentation (slope analysis, FT-IR and NMR spectroscopy, EXAFS, SANS, and ESI-MS) and computational modeling. The paper demonstrates the importance of applying a broad range of techniques to obtain a convincing mode of action for the complex processes involved in anion recognition in the solution phase. A consistent and comprehensive understanding of how the ligand operates to achieve Rh(III) selectivity over the competitor anion Cl- has emerged. This knowledge will guide the design of extractants and thus offers promise for improving the sustainability of metal extraction from both traditional mining sources and the recycling of secondary source materials.

2.
J Chem Phys ; 137(1): 014505, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22779663

ABSTRACT

The infrared spectra of molecular complexes containing chloroform (CHCl(3)) and Lewis bases (N(2), CO, H(2)O, and CH(3)CN) have been observed in an Ar matrix, and vibrational peaks for the 1:1 complexes have been assigned. The C-H stretching band of chloroform in the complexes showed a seamless transition from a blue shift (for N(2) and CO) to a red shift (H(2)O and CH(3)CN), in accord with the proton affinity of the base molecules. Density functional calculations predicted that the C-H··(σ-type lone pair) isomer is the most stable, which is consistent with the observed vibrational peak shift upon complex formation. The underlying mechanisms of the C-H hydrogen bond were explored using the topological properties of the electronic charge density and natural orbital analyses.


Subject(s)
Chloroform/chemistry , Lewis Bases/chemistry , Acetonitriles/chemistry , Carbon Monoxide/chemistry , Color , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Nitrogen/chemistry , Spectrophotometry, Infrared , Water/chemistry
3.
J Chem Phys ; 133(21): 214502, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-21142303

ABSTRACT

The supermolecule approach has been used to model molecules embedded in solid argon matrix, wherein interaction between the guest and the host atoms in the first solvation shell is evaluated with the use of density functional calculations. Structural stability and simulated spectra have been obtained for formic acid dimer (FAD)-Ar(n) (n = 21-26) clusters. The calculations at the B971∕6-31++G(3df,3pd) level have shown that the tetrasubstitutional site on Ar(111) plane is likely to incorporate FAD most stably, in view of consistency with the matrix shifts available experimentally.


Subject(s)
Formates/chemistry , Models, Chemical , Argon/chemistry , Dimerization , Macromolecular Substances/chemistry , Models, Molecular , Quantum Theory , Spectrum Analysis
4.
Phys Chem Chem Phys ; 12(36): 11133-50, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20668738

ABSTRACT

Hindered torsional motion in a molecule such as HSOH leads to tunnelling splittings. Lying between the simpler limiting cases of strongly hindered torsion (the "we can simply neglect the tunnelling" limit) and that of free internal rotation (the "tunnelling pair of levels are just different vibrational states" limit) HSOH is particularly challenging due to strong and inherent torsion-rotation coupling. The low symmetry due to the different terminal moieties, SH and OH, further enriches the energy level pattern by allowing a systematic mixing within each quadruplet of torsion- and asymmetry-doubled levels. This mixing, which varies in a systematic manner with angular momentum quantum numbers, can reach 50% and is in addition to the mass-dependent and quasicyclic variation of the tunnelling splittings. We show that a carefully implemented reduced-dimension model, the Generalised SemiRigid Bender (GSRB), combined with a few modest ab initio calculations, is sufficient to account for the bulk of these physical effects. We also point out the reversal of energy pairing of torsional levels with increased energy. That is, at low torsional energy the lowest of the torsional level pair is the symmetric level while at high torsional energy it is the antisymmetric level which is the lowest. Finally, we present a purely empirical determination of the tunnelling splittings for K = 0, 1, 3, 4, and 5.

5.
J Chem Phys ; 128(11): 114310, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18361574

ABSTRACT

Infrared absorption spectra of (HCOOH)(2) and (DCOOH)(2) in solid argon, krypton, and xenon matrices have been measured and each fundamental band has been assigned. Spectra in Ar and Kr matrices showed notable splitting in contrast to those in Xe, which suggests a difference in structure of the trapping sites. A comparison with the reported jet-cooled spectra has shown that vibrational structures of the spectra of (HCOOH)(2) and (DCOOH)(2) in the O-H stretching region are preserved in the matrices. On the other hand, the C-O stretching band of (HCOOH)(2) shows a drastic change upon matrix isolation, wherein the Fermi-triad feature observed in gas phase [F. Ito, Chem. Phys. Lett. 447, 202 (2007)] could not be identified. No substantial change of the vibrational structure has been found for matrix-isolated (DCOOH)(2). The differences of the vibrational structures in the matrix-isolation spectra and in the jet-cooled spectra have been qualitatively accounted for using the idea of anharmonic couplings among "matrix-shifted harmonic states."


Subject(s)
Argon/chemistry , Formates/chemistry , Krypton/chemistry , Spectrophotometry, Infrared/methods , Spectroscopy, Fourier Transform Infrared , Xenon/chemistry , Models, Chemical , Molecular Structure
7.
J Chem Phys ; 125(3): 34508, 2006 Jul 21.
Article in English | MEDLINE | ID: mdl-16863363

ABSTRACT

The infrared spectra of the (H(2)O)n-SO(2) complexes trapped in argon matrices have been investigated using Fourier transform infrared spectroscopy. In addition to the 1:1 and 2:1 complexes, the first spectroscopic evidence for the 3:1 complex has been obtained from the spectra of the SO stretching and the OH stretching modes. The observed frequency shifts in the bonded OH stretching region indicate that the hydrogen bonds of the 2:1 and 3:1 complexes are strengthened compared to that of the 1:1 complex, which suggests the cyclic structure of the complexes.

8.
J Chem Phys ; 124(23): 234509, 2006 Jun 21.
Article in English | MEDLINE | ID: mdl-16821931

ABSTRACT

We have observed infrared spectra of the CF(3)I dimer produced in a supersonic jet by matrix-isolation Fourier transform infrared spectroscopy and infrared cavity ring-down (IR-CRD) spectroscopy. In the matrix-isolation experiments, the dimer was isolated in an Ar matrix by the pulse-deposition method. The recorded spectral range covers the symmetric (nu(1)) and doubly degenerate (nu(4)) C-F stretching regions. From the concentration dependence of the matrix-isolation spectra we have assigned one dimer band for each fundamental region. It was not easy to identify the dimer band for the nu(4) band because of the multiplet feature of the monomeric nu(4) band caused by the site symmetry breaking. The spectra of (CF(3)I)(2) in the nu(4) band region were thus also measured in the gas phase by IR-CRD spectroscopy, where we detected two dimer bands. Comparing the observed band positions with the results of quantum chemical calculations, we have assigned the observed dimer bands to the head-to-head isomer. The structure of (CF(3)I)(2) and its photochemical implications are discussed, in comparison with methyl iodide dimer reported previously [Ito et al., Chem. Phys. Lett. 343, 185 (2001)].

9.
J Chem Phys ; 124(5): 054309, 2006 Feb 07.
Article in English | MEDLINE | ID: mdl-16468871

ABSTRACT

Infrared spectra of methyl iodide clusters produced in a supersonic jet have been observed in the CH3 bending region at 8 mum by cavity ring-down spectroscopy. The dependence of the spectral features on the mixing ratio of CH3I to He and on the stagnation pressure has allowed us to assign the absorption peaks, with the help of the previous results obtained by matrix-isolation technique [Ito et al., Chem. Phys. Lett. 343, 185 (2001)] and infrared cavity ring-down spectroscopy in the C-H stretching region [Ito et al., Chem. Phys. 286, 337 (2003)]. Ab initio calculations at the MP2 level have been carried out up to tetramer to confirm the assignments. It has been found that the frequency shifts upon clustering (relative to monomer) observed in the bending region are not monotonic, in contrast to those in the C-H stretching region. The observed frequency shifts are discussed in terms of dispersion interaction and its variation upon vibrational excitation.

10.
J Chem Phys ; 124(3): 034304, 2006 Jan 21.
Article in English | MEDLINE | ID: mdl-16438580

ABSTRACT

Coherent phase control of the photodissociation reaction of the dimethylsulfide has been achieved by means of quantum-mechanical interference between one- and three-photon transitions. Dimethylsulfide was irradiated by fundamental and frequency-tripled outputs of a visible laser (600.5-602.5 nm), simultaneously to yield CH3S+ and CH3SCH2+ fragment ions. The branching ratio of the two product channels could be modulated with variation of the phase difference between the light fields. This accounted for the difference between the molecular phases of the two product channels. The phase lag was observed to have a maximum value of 8 degrees at 601.5 nm. This is the first result of a selective bond breaking in a polyatomic molecule by the coherent phase control.

SELECTION OF CITATIONS
SEARCH DETAIL
...