Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35214117

ABSTRACT

We are interested in promoting the development of transcutaneous immunization using microneedle technology and attempting to apply an adjuvant with transcutaneous immunization to improve the efficacy and reduce the amount of antigen and number of administrations needed. In this study, we collected basic information to help elucidate the mechanism responsible for the transcutaneous adjuvant activity of imiquimod (IMQ), which is a ligand of toll-like receptor (TLR) 7. In mouse groups administered ovalbumin (OVA), the OVA-specific IgG antibody titer of the IMQ-adjuvanted group was higher than that of the group administered OVA alone. No immune response bias due to transcutaneous IMQ administration was observed in terms of IgG1 (T helper cell [Th]2-type IgG subclass) and IgG2c (Th1-type IgG subclass) antibody titers. After the initial immunization, the IMQ-adjuvanted group showed increased migration of Langerhans cells to draining lymph nodes (dLNs) and active proliferation of OVA-specific CD4+ T cells. Transcutaneously administered IMQ did not affect the direction of CD4+ T cell differentiation, while promoted B cell activation and germinal center (GC) B cell differentiation. Immune staining revealed greater GC formation in the dLNs with the IMQ-adjuvanted group than in the OVA-alone group. In the secondary immune response, effector T cells increased in the dLNs and spleen, and effector memory T cells also increased in the spleen in the IMQ-adjuvanted group. In addition, our results suggested that the administration of IMQ enhanced B cell differentiation into plasma cells and GC B cells in the dLNs and spleen. In this study, we partially clarified the mechanism underlying the adjuvant activity of transcutaneously administered IMQ, which is required for the practical application of transcutaneous immunization with IMQ.

2.
Vaccine ; 40(6): 862-872, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34998604

ABSTRACT

Transcutaneous immunization (TCI) is an effective vaccination method that is easier and less painful than the conventional injectable vaccination method. We previously developed self-dissolving microneedle patches (sdMN) and demonstrated that this TCI method has a high vaccination efficacy in mice and humans. To elucidate the mechanism of immune response induction, which is the basis for the efficacy and safety of TCI with sdMN, we examined the local reaction of the skin where sdMN was applied and the kinetics and differentiation status of immune cells in the draining lymph nodes (DLNs). We found that gene expression of the proinflammatory cytokine Il1b and the downstream transcription factor Irf7 was markedly upregulated in skin tissues after sdMN application. Moreover, activation of Langerhans cells and CD207- dermal dendritic cells, which are subsets of antigen-presenting cells (APCs) in the skin, and their migration to the DLNs were promoted. Furthermore, the activated APC subsets promoted CD4+ T cell and B cell differentiation and the formation of germinal centers, which are the sites of high-affinity antibody production. These phenomena associated with sdMN application may contribute to the efficient production of antigen-specific antibodies after TCI using sdMN. These findings provide essential information regarding immune response induction mechanisms for the development and improvement of TCI preparations.


Subject(s)
Immunization , Vaccination , Administration, Cutaneous , Animals , Antibody Formation , Drug Delivery Systems/methods , Mice , Skin , Vaccination/methods
3.
Vaccines (Basel) ; 9(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960226

ABSTRACT

In this study, we investigated the mechanism of transcutaneous adjuvant activity of the CpG-oligonucleotide (K3) in mice. Transcutaneous immunization (TCI) with an ovalbumin-loaded self-dissolving microneedle patch (OVA-sdMN) and K3-loaded hydrophilic gel patch (HG) increased OVA-specific Th2- and Th1-type IgG subclass antibody titers more rapidly and strongly than those after only OVA-sdMN administration. However, the antigen-specific proliferation of OVA-specific CD4+ T cells was similar between the OVA-only and the OVA+K3 groups. Population analysis of various immune cells in draining lymph nodes (dLNs) in the primary immune response revealed that the OVA+K3 combination doubled the number of dLN cells, with the most significant increase in B cells. Phenotypic analysis by flow cytometry revealed that B-cell activation and maturation were promoted in the OVA+K3 group, suggesting that direct B-cell activation by K3 largely contributed to the rapid increase in antigen-specific antibody titer in TCI. In the secondary immune response, a significant increase in effector T cells and effector memory T cells, and an increase in memory B cells were observed in the OVA+K3 group compared with that in the OVA-only group. Thus, K3, as a transcutaneous adjuvant, can promote the memory differentiation of T and B cells.

4.
Int J Pharm ; 601: 120563, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33811967

ABSTRACT

Transcutaneous immunization (TCI) is an appealing vaccination method. Compared with conventional injectable immunization, TCI is easier and less painful. We previously developed a dissolving microneedle (MN) patch and demonstrated that TCI using MN patches demonstrates high vaccination efficacy without adverse events in humans. In this study, we investigated the immune induction mechanism of TCI using our MN patch, focusing on inflammatory responses in the skin and on the dynamics, activation, and differentiation of various immunocompetent cells in draining lymph nodes (dLNs). We demonstrate that inflammatory cytokines such as IL-6 and TNF-α increased in the skin at an early stage after MN patch application, inducing the infiltration of macrophages and neutrophils and promoting the activation and migration of skin-resident antigen-presenting cells (Langerhans and Langerin- dermal dendritic cells) to dLNs. Moreover, the activated antigen-presenting cells reaching the dLNs enhanced the differentiation of T (Teff, Tem, and Tcm) and B (plasma and memory) cells. This may contribute to the efficient antigen-specific antibody production induced by TCI using MN patches. We believe that our findings reveal a part of the immune induction mechanism by TCI and provide useful information for the development and improvement of TCI formulations based on the immune induction mechanism.


Subject(s)
Skin , Vaccination , Administration, Cutaneous , Animals , Drug Delivery Systems , Immunization , Mice
5.
Pharmaceutics ; 12(3)2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32183437

ABSTRACT

Transcutaneous immunization (TCI) is easy to use, minimally invasive, and has excellent efficacy in vaccines against infections. We focused on toll-like receptor (TLR) ligands as applicable adjuvants for transcutaneous formulations and characterized immune responses. TCI was performed using poke-and-patch methods, in which puncture holes are formed with a polyglycolic acid microneedle on the back skin of mice. Various TLR ligands were applied to the puncture holes and covered with an ovalbumin-loaded hydrophilic gel patch. During the screening process, K3 (CpG-oligonucleotide) successfully produced more antigen-specific antibodies than other TLR ligands and induced T helper (Th) 1-type polarization. Transcutaneously administered K3 was detected in draining lymph nodes and was found to promote B cell activation and differentiation, suggesting a direct transcutaneous adjuvant activity on B cells. Furthermore, a human safety test of K3-loaded self-dissolving microneedles (sdMN) was performed. Although a local skin reaction was observed at the sdMN application site, there was no systemic side reaction. In summary, we report a K3-induced Th1-type immune response that is a promising adjuvant for transcutaneous vaccine formulations using MN and show that K3-loaded sdMN can be safely applied to human skin.

6.
Pharm Res ; 37(3): 35, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31950282

ABSTRACT

PURPOSE: Epicutaneous immunotherapy (EPIT) involving the skin's immune system is easy to use, painless and has a low risk of systemic side effects; it can be applied to food allergies that have a high morbidity rate in children. In this study, we evaluated the safety and efficacy of hydrophilic gel patch (HG) for EPIT. METHODS: Milk protein concentrate (MPC)-containing HG was applied to the skin that maintained a barrier function or formed puncture holes with microneedle, and MPC-specific antibodies were measured. The clinical study was conducted involving patients with severe milk allergy. RESULTS: No specific immune response was induced when immunizing to intact skin, and antibody production was observed by forming puncture holes. It was suggested that MPC contained in HG has immunogenicity and a very small amount of MPC was delivered to intact skin. In the clinical study, the symptom induction threshold increased in four of eight subjects, allowing them to consume milk and switch to oral immunotherapy. Although local skin reactions and temporary elevation of specific IgE antibodies were observed, no systemic side effects appeared throughout the study. CONCLUSIONS: EPIT using HG is a safe method to enable oral administration even in patients with severe milk allergies.


Subject(s)
Acrylic Resins/chemistry , Immunoglobulin E/immunology , Milk Hypersensitivity/immunology , Milk Proteins/immunology , Transdermal Patch , Administration, Cutaneous , Animals , Cattle , Child , Child, Preschool , Disease Models, Animal , Female , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulin E/analysis , Immunotherapy , Male , Mice , Microinjections , Milk Proteins/administration & dosage , Needles , Pilot Projects , Skin/metabolism , Treatment Outcome
8.
Int J Pharm ; 532(1): 374-383, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-28855138

ABSTRACT

Microneedle (MN) patches have great potential as transcutaneous vaccine delivery devices because MNs can effectively deliver vaccine antigen into the skin through the micropores formed in the stratum corneum by low-invasive and painless skin puncturing. This study aims to develop novel double-decker MN patches which have not only high safety and efficacy but also broad applicability to various vaccine antigens. We developed two types of MN patches (PGA-MN and Nylon-MN) that are made from polyglycolic acid and Nylon-6. In pre-clinical studies, both MN patches could demonstrably deliver antigens into resected human dermal tissue, prolong antigen deposition and increase antigen-specific IgG levels after vaccination compared with conventional injections. We demonstrated both MN patches could be safely applied to human skin because no broken MNs or significant skin irritation were observed after applications in the clinical research. PGA-MN was suggested to be superior to Nylon-MN regarding human skin puncturability based on measurements of transepidermal water loss and needle failure force. A high content of tetravalent influenza hemagglutinin antigens loaded on PGA-MN could stably maintain HA titers at 35°C for 1year. Overall, double-decker MN patches can reliably and safely puncture human skin and are promising as effective transcutaneous vaccine delivery devices.


Subject(s)
Drug Delivery Systems , Microinjections , Needles , Transdermal Patch , Vaccination/instrumentation , Administration, Cutaneous , Adult , Animals , Antigens/administration & dosage , Antigens/immunology , Drug Delivery Systems/adverse effects , Female , Hemagglutinins, Viral/administration & dosage , Hemagglutinins, Viral/immunology , Humans , Immunoglobulin G/blood , Influenza Vaccines/administration & dosage , Influenza Vaccines/adverse effects , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Microinjections/adverse effects , Middle Aged , Needles/adverse effects , Rats, Wistar , Skin/metabolism , Skin Irritancy Tests , Transdermal Patch/adverse effects , Young Adult
9.
Pharmaceutics ; 9(3)2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28771172

ABSTRACT

Microneedle (MN) patches are promising for transcutaneous vaccination because they enable vaccine antigens to physically penetrate the stratum corneum via low-invasive skin puncturing, and to be effectively delivered to antigen-presenting cells in the skin. In second-generation MN patches, the dissolving MNs release the loaded vaccine antigen into the skin. To shorten skin application time for clinical practice, this study aims to develop novel faster-dissolving MNs. We designed two types of MNs made from a single thickening agent, carboxymethylcellulose (CMC) or hyaluronan (HN). Both CMC-MN and HN-MN completely dissolved in rat skin after a 5-min application. In pre-clinical studies, both MNs could demonstrably increase antigen-specific IgG levels after vaccination and prolong antigen deposition compared with conventional injections, and deliver antigens into resected human dermal tissue. In clinical research, we demonstrated that both MNs could reliably and safely puncture human skin without any significant skin irritation from transepidermal water loss measurements and ICDRG (International Contact Dermatitis Research Group) evaluation results.

SELECTION OF CITATIONS
SEARCH DETAIL
...