Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Ann Neurol ; 92(2): 304-321, 2022 08.
Article in English | MEDLINE | ID: mdl-35471564

ABSTRACT

OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.


Subject(s)
Apyrase , Intellectual Disability , Spastic Paraplegia, Hereditary , White Matter , Apyrase/genetics , Dysarthria , Humans , Intellectual Disability/genetics , Mutation/genetics , Paraplegia/genetics , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/genetics , White Matter/diagnostic imaging , White Matter/pathology
2.
Hum Mol Genet ; 31(21): 3597-3612, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35147173

ABSTRACT

Mitochondrial diseases are a group of inherited diseases with highly varied and complex clinical presentations. Here, we report four individuals, including two siblings, affected by a progressive mitochondrial encephalopathy with biallelic variants in the cardiolipin biosynthesis gene CRLS1. Three affected individuals had a similar infantile presentation comprising progressive encephalopathy, bull's eye maculopathy, auditory neuropathy, diabetes insipidus, autonomic instability, cardiac defects and early death. The fourth affected individual presented with chronic encephalopathy with neurodevelopmental regression, congenital nystagmus with decreased vision, sensorineural hearing loss, failure to thrive and acquired microcephaly. Using patient-derived fibroblasts, we characterized cardiolipin synthase 1 (CRLS1) dysfunction that impaired mitochondrial morphology and biogenesis, providing functional evidence that the CRLS1 variants cause mitochondrial disease. Lipid profiling in fibroblasts from two patients further confirmed the functional defect demonstrating reduced cardiolipin levels, altered acyl-chain composition and significantly increased levels of phosphatidylglycerol, the substrate of CRLS1. Proteomic profiling of patient cells and mouse Crls1 knockout cell lines identified both endoplasmic reticular and mitochondrial stress responses, and key features that distinguish between varying degrees of cardiolipin insufficiency. These findings support that deleterious variants in CRLS1 cause an autosomal recessive mitochondrial disease, presenting as a severe encephalopathy with multi-systemic involvement. Furthermore, we identify key signatures in cardiolipin and proteome profiles across various degrees of cardiolipin loss, facilitating the use of omics technologies to guide future diagnosis of mitochondrial diseases.


Subject(s)
Brain Diseases , Mitochondrial Diseases , Animals , Mice , Brain Diseases/genetics , Brain Diseases/metabolism , Cardiolipins/genetics , Cardiolipins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Proteomics
4.
Am J Hum Genet ; 108(10): 2017-2023, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34587489

ABSTRACT

ABHD16A (abhydrolase domain-containing protein 16A, phospholipase) encodes the major phosphatidylserine (PS) lipase in the brain. PS lipase synthesizes lysophosphatidylserine, an important signaling lipid that functions in the mammalian central nervous system. ABHD16A has not yet been associated with a human disease. In this report, we present a cohort of 11 affected individuals from six unrelated families with a complicated form of hereditary spastic paraplegia (HSP) who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls. Our findings add ABHD16A to the growing list of lipid genes in which dysregulation can cause complicated forms of HSP and begin to describe the molecular etiology of this condition.


Subject(s)
Cerebral Palsy/pathology , Intellectual Disability/pathology , Leukoencephalopathies/pathology , Monoacylglycerol Lipases/genetics , Mutation , Spastic Paraplegia, Hereditary/pathology , Adolescent , Adult , Cerebral Palsy/etiology , Cerebral Palsy/metabolism , Child , Child, Preschool , Cohort Studies , Female , Humans , Intellectual Disability/etiology , Intellectual Disability/metabolism , Leukoencephalopathies/etiology , Leukoencephalopathies/metabolism , Male , Monoacylglycerol Lipases/deficiency , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/etiology , Spastic Paraplegia, Hereditary/metabolism , Young Adult
5.
Eur J Med Genet ; 63(2): 103655, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31034989

ABSTRACT

LGMD1D is an autosomal dominant limb girdle muscular dystrophy caused by variants in the DNAJB6 gene. This is typically an adult-onset disorder characterized by moderately progressive proximal muscle weakness without respiratory or bulbar involvement; however phenotypic variability is often observed with some individuals having earlier onset and more severe symptoms. Here, we present a family with a novel NM_005494.2:c.271T > G p.(Phe91Val) variant in DNAJB6 with a late-onset, mild and slowly progressive form of the disease, including one individual, who in her 7th decade of life has subclinical LGMD1D with only mild features on muscle biopsy and MRI. Unlike previously reported cases where missense variants affecting the Phe91 amino acid residue are associated with a more severe form of the disease, this family represents the mild end of the LGMD1D clinical spectrum. Therefore, this family adds further complexity to the genotype-phenotype correlation in DNAJB6-associated muscular dystrophies.


Subject(s)
HSP40 Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Muscle Weakness/genetics , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Nerve Tissue Proteins/genetics , Adult , Aged , Female , Genetic Association Studies , Heterozygote , Humans , Male , Muscle, Skeletal/ultrastructure , Muscular Dystrophies, Limb-Girdle/congenital , Muscular Dystrophies, Limb-Girdle/pathology , Mutation, Missense , Pedigree , Phenotype , Exome Sequencing
6.
Eur J Med Genet ; 62(7): 103662, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31071488

ABSTRACT

Limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous muscular diseases that predominantly affect the proximal muscles. Pathogenic variants in TNPO3 have been associated with a rare, autosomal dominant limb-girdle muscular dystrophy 1F (LGMD1F) in a large Italian-Spanish family and an isolated LGMD1F case. Here we present two individuals from a Hungarian family with an early-onset, slowly progressive muscular dystrophy. Both the female proband and her affected son had delayed early motor milestones including first walking at 14 months and 18 months, respectively. Both present with progressive weakness of facial, bulbar, axial, and distal muscles especially of the lower extremities. Electromyography indicated myogenic damage and muscle biopsy from the proband showed myopathic alterations with sarcoplasmic masses and signs of mitochondrial dysfunction. Exome sequencing of the female proband identified a novel c.2767delC p.(Arg923AspfsTer17) variant in TNPO3. Sanger sequencing confirmed the presence of the TNPO3 variant in the affected son; the unaffected son did not have the variant. The identification of the c.2767delC variant further supports the clinical significance of TNPO3 and expands the clinical spectrum of TNPO3-associated LGMD1F.


Subject(s)
Muscular Dystrophies, Limb-Girdle/genetics , beta Karyopherins/genetics , Adult , Exome , Female , Humans , Infant , Male , Muscular Dystrophies, Limb-Girdle/pathology , Mutation , Pedigree
7.
Am J Med Genet A ; 179(5): 837-841, 2019 05.
Article in English | MEDLINE | ID: mdl-30773799

ABSTRACT

Autosomal dominant Dandy-Walker malformation and occipital cephalocele (ADDWOC) is a rare, congenital, and incompletely penetrant malformation that is considered to be part of the Dandy-Walker spectrum of disorders. Affected individuals often present with an occipital cephalocele with a bony skull defect, but typically have normal neurological development. Here, we report on a three-generation family in which individuals have variable phenotypes that are consistent with the ADDWOC spectrum: arachnoid cysts in the proband and his maternal grandfather, an occipital cephalocele in the proband and his brother, and a small bony defect in the proband's mother. Whole exome sequencing identified a rare heterozygous variant in NID1 (NM_002508.2:c.1162C>T, (p.Gln388Ter)) in the proband, his brother, and his mother. Sanger sequencing confirmed the presence of this variant in the maternal grandfather. The identical c.1162C>T variant was previously identified in variably affected members of a three-generation family with ADDWOC. This case report provides further evidence that variants in NID1 may be clinically relevant for the development of a phenotype that is consistent with ADDWOC, and extends the phenotype of NID1-associated ADDWOC to include arachnoid cysts. Given that the Dandy-Walker malformation itself is not a pre-requisite to this spectrum of phenotypes, we also suggest a novel term for the NID1-associated disorder in order to give emphasis to this phenotypic variability: "Autosomal Dominant Posterior Fossa Anomalies with Occipital Cephaloceles."


Subject(s)
Dandy-Walker Syndrome/genetics , Encephalocele/genetics , Genetic Predisposition to Disease , Genetic Variation , Membrane Glycoproteins/genetics , Phenotype , Adult , Alleles , Amino Acid Substitution , Dandy-Walker Syndrome/diagnosis , Encephalocele/diagnosis , Female , Genetic Association Studies , Humans , Magnetic Resonance Imaging , Male , Occipital Lobe , Pedigree
8.
Mitochondrion ; 36: 186-192, 2017 09.
Article in English | MEDLINE | ID: mdl-28866056

ABSTRACT

Retinal ganglion cells, the neurons that selectively die in glaucoma and other optic neuropathies, are endowed with an exceedingly active metabolism and display a particular vulnerability to mitochondrial dysfunction. Mitochondria are exquisitely dynamic organelles that are continually responding to endogenous and environmental cues to readily meet the energy demand of neuronal networks. The highly orchestrated regulation of mitochondrial biogenesis, fusion, fission, transport and degradation is paramount for the maintenance of energy-expensive synapses at RGC dendrites and axon terminals geared for optimal neurotransmission. The present review focuses on the progress made to date on understanding the biology of mitochondrial dynamics and quality control and how dysregulation of these processes can profoundly affect retinal ganglion cell viability and function in optic nerve diseases.


Subject(s)
Mitochondrial Dynamics , Optic Nerve Diseases/physiopathology , Retinal Ganglion Cells/physiology , Humans
9.
J Vis Exp ; (109): e53731, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-27077732

ABSTRACT

The use of rodent models of glaucoma has been essential to understand the molecular mechanisms that underlie the pathophysiology of this multifactorial neurodegenerative disease. With the advent of numerous transgenic mouse lines, there is increasing interest in inducible murine models of ocular hypertension. Here, we present an occlusion model of glaucoma based on the injection of magnetic microbeads into the anterior chamber of the eye using a modified microneedle with a facetted bevel. The magnetic microbeads are attracted to the iridocorneal angle using a handheld magnet to block the drainage of aqueous humour from the anterior chamber. This disruption in aqueous dynamics results in a steady elevation of intraocular pressure, which subsequently leads to the loss of retinal ganglion cells, as observed in human glaucoma patients. The microbead occlusion model presented in this manuscript is simple compared to other inducible models of glaucoma and also highly effective and reproducible. Importantly, the modifications presented here minimize common issues that often arise in occlusion models. First, the use of a bevelled glass microneedle prevents backflow of microbeads and ensures that minimal damage occurs to the cornea during the injection, thus reducing injury-related effects. Second, the use of magnetic microbeads ensures the ability to attract most beads to the iridocorneal angle, effectively reducing the number of beads floating in the anterior chamber avoiding contact with other structures (e.g., iris, lens). Lastly, the use of a handheld magnet allows flexibility when handling the small mouse eye to efficiently direct the magnetic microbeads and ensure that there is little reflux of the microbeads from the eye when the microneedle is withdrawn. In summary, the microbead occlusion mouse model presented here is a powerful investigative tool to study neurodegenerative changes that occur during the onset and progression of glaucoma.


Subject(s)
Disease Models, Animal , Glaucoma , Microspheres , Ocular Hypertension , Animals , Glaucoma/physiopathology , Humans , Intraocular Pressure , Magnetic Phenomena , Mice , Ocular Hypertension/physiopathology
10.
Clin Exp Ophthalmol ; 42(1): 13-24, 2014.
Article in English | MEDLINE | ID: mdl-24433355

ABSTRACT

Anterior segment dysgenesis refers to a spectrum of disorders affecting structures in the anterior segment of the eye including the iris, cornea and trabecular meshwork. Approximately 50% of patients with anterior segment dysgenesis develop glaucoma. Traditional genetic methods using linkage analysis and family-based studies have identified numerous disease-causing genes such as PAX6, FOXC1 and PITX2. Despite these advances, phenotypic and genotypic heterogeneity pose continuing challenges to understand the mechanisms underlying the complexity of anterior segment dysgenesis disorders. Genomic methods, such as genome-wide association studies, are potentially an effective tool to understand anterior segment dysgenesis and the individual susceptibility to the development of glaucoma. In this review, we provide the rationale, as well as the challenges, to utilizing genomic methods to examine anterior segment dysgenesis disorders.


Subject(s)
Anterior Eye Segment/abnormalities , Eye Abnormalities/genetics , Genomics , Genetic Linkage , Genome-Wide Association Study , Genotype , Humans , Phenotype
11.
Invest Ophthalmol Vis Sci ; 50(8): 3573-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19279310

ABSTRACT

PURPOSE: FOXC1 mutations result in Axenfeld-Rieger syndrome, a disorder characterized by a broad spectrum of malformations of the anterior segment of the eye and an elevated risk for glaucoma. A novel FOXC1 W152G mutation was identified in a patient with aniridia. Molecular analysis was conducted to determine the functional consequences of the FOXC1 W152G mutation. METHODS: Site-directed mutagenesis was used to introduce the W152G mutation into the FOXC1 complementary DNA. The levels of W152G protein expression and the functional abilities of the mutant protein were determined. RESULTS: After screening for mutations in PAX6, CYP1B1, and FOXC1, a novel FOXC1 W152G mutation was identified in a newborn boy with aniridia and congenital glaucoma. Molecular analysis of the W152G mutation revealed that the mutant protein has severe molecular consequences in FOXC1, including defects in phosphorylation, protein folding, DNA-binding ability, inability to transactivate a reporter gene, and nuclear localization. Although W152G has molecular defects similar to those of the previously studied FOXC1 L130F mutation, W152G causes a more severe phenotype than L130F. Both the W152G and the L130F mutations result in the formation of protein aggregates in the cytoplasm. However, unlike the L130F aggregates, the W152G aggregates do not form microtubule-dependent inclusion bodies, known as aggresomes. CONCLUSIONS: Severe molecular consequences, including the inability of the W152G protein aggregates to form protective aggresomes, may underlie the aniridia phenotype that results from the FOXC1 W152G mutation.


Subject(s)
Aniridia/genetics , Forkhead Transcription Factors/genetics , Mutation, Missense , Animals , Aryl Hydrocarbon Hydroxylases , COS Cells , Cell Culture Techniques , Chlorocebus aethiops , Cornea/abnormalities , Corneal Opacity/genetics , Cytochrome P-450 CYP1B1 , Cytochrome P-450 Enzyme System/genetics , Electrophoretic Mobility Shift Assay , Eye Proteins/genetics , Fluorescent Antibody Technique, Indirect , Gene Expression , Glaucoma/congenital , HeLa Cells , Homeodomain Proteins/genetics , Humans , Immunoblotting , Infant, Newborn , Male , Mutagenesis, Site-Directed , PAX6 Transcription Factor , Paired Box Transcription Factors/genetics , Phenotype , Plasmids , Polymerase Chain Reaction , Repressor Proteins/genetics
12.
Arch Ophthalmol ; 125(1): 128-35, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17210863

ABSTRACT

OBJECTIVE: To understand how the novel L130F mutation, found in 2 patients with Axenfeld-Rieger syndrome, disrupts function of the forkhead box C1 protein (FOXC1). METHODS: Sequencing DNA from patients with Axenfeld-Rieger syndrome identified a novel missense mutation that results in an L130F substitution in the FOXC1 gene. Site-directed mutagenesis was used to introduce the L130F mutation into the FOXC1 complementary DNA. The level of L130F protein expression was determined by means of immunoblotting. We determined the mutant protein's ability to localize to the nucleus, bind DNA, and transactivate a reporter construct. RESULTS: The FOXC1 L130F mutant protein is expressed at levels similar to those of wild-type FOXC1. The L130F protein, however, migrated at an apparent reduced molecular weight compared with the wild-type protein, suggesting that the mutant and wild-type proteins may be differentially phosphorylated. The L130F protein also had a significantly impaired capacity to localize to the nucleus, bind DNA, and transactivate reporter genes. CONCLUSIONS: The disease-causing L130F mutation further demonstrates that helix 3 of the forkhead domain is important for the FOXC1 protein to properly localize to the nucleus, bind DNA, and activate gene expression. CLINICAL RELEVANCE: The inability of FOXC1 to function owing to the L130F mutation provides further insight into how disruptions in the FOXC1 gene lead to human Axenfeld-Rieger syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Anterior Eye Segment/abnormalities , Eye Abnormalities/genetics , Forkhead Transcription Factors/genetics , Iris/abnormalities , Mutation, Missense , Adult , Animals , COS Cells , Cell Culture Techniques , Chlorocebus aethiops , Electrophoretic Mobility Shift Assay , Female , Humans , Male , Microscopy, Fluorescence , Mutagenesis, Site-Directed , Plasmids , Polymerase Chain Reaction , Sequence Analysis, DNA , Tooth Abnormalities/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...