Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 3191, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291104

ABSTRACT

Fertilization controls various aspects of cereal growth such as tiller number, leaf size, and panicle size. However, despite such benefits, global chemical fertilizer use must be reduced to achieve sustainable agriculture. Here, based on field transcriptome data from leaf samples collected during rice cultivation, we identify fertilizer responsive genes and focus on Os1900, a gene orthologous to Arabidopsis thaliana MAX1, which is involved in strigolactone biosynthesis. Elaborate genetic and biochemical analyses using CRISPR/Cas9 mutants reveal that Os1900 together with another MAX1-like gene, Os5100, play a critical role in controlling the conversion of carlactone into carlactonoic acid during strigolactone biosynthesis and tillering in rice. Detailed analyses of a series of Os1900 promoter deletion mutations suggest that fertilization controls tiller number in rice through transcriptional regulation of Os1900, and that a few promoter mutations alone can increase tiller numbers and grain yields even under minor-fertilizer conditions, whereas a single defective os1900 mutation does not increase tillers under normal fertilizer condition. Such Os1900 promoter mutations have potential uses in breeding programs for sustainable rice production.


Subject(s)
Arabidopsis , Oryza , Oryza/metabolism , Fertilizers , Plant Breeding , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Edible Grain/metabolism , Fertilization , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Breed Sci ; 73(1): 1-2, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37168812
3.
AoB Plants ; 14(3): plac019, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35669443

ABSTRACT

Barley (Hordeum vulgare) is the fourth most highly produced cereal in the world after wheat, rice and maize and is mainly utilized as malts and for animal feed. Barley, a model crop of the tribe Triticeae, is important in comparative analyses of Poaceae. However, molecular understanding about the developmental processes is limited in barley. Our previous work characterized one of two WUSCHEL-RELATED HOMEOBOX 3 (WOX3) genes present in the barley genome: NARROW LEAFED DWARF1 (NLD1). We demonstrated that NLD1 plays a pivotal role in the development of lateral organs. In the present study, we describe a bifurcated palea (bip) mutant of barley focusing on flower and leaf phenotypes. The palea in the bip mutant was split into two and develop towards inside the lemma surrounding the carpels and anthers. The bip mutant is devoid of lodicules, which develop in a pair at the base of the stamen within the lemma in normal barley. bip also exhibited malformations in leaves, such as narrow leaf due to underdeveloped leaf-blade width, and reduced trichome density. Map-based cloning and expression analysis indicated that BIP is identical to another barley WOX3 gene, named HvWOX3. The bip nld1 double mutant presented a more severe reduction in leaf-blade width and number of trichomes. By comparing the phenotypes and gene expression patterns of various WOX3 mutants, we concluded that leaf bilateral outgrowth and trichome development are promoted by both NLD1 and HvWOX3, but that HvWOX3 serves unique and pivotal functions in barley development that differ from those of NLD1.

4.
Plant Cell Physiol ; 63(2): 265-278, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35166362

ABSTRACT

The molecular basis for leaf development, a major focus in developmental biology, remains unclear in the monocotyledonous grass, rice (Oryza sativa). Here, we performed a mutant screen in rice and identified an AP2-type transcription factor family protein, NARROW AND DWARF LEAF1 (NDL1). NDL1 is the ortholog of Arabidopsis thaliana (subsequently called Arabidopsis) ENHANCER OF SHOOT REGENERATION1 (ESR1)/DORNRÖSCHEN (DRN) and mediates leaf development and maintenance of the shoot apical meristem (SAM). Loss of function of NDL1 results in bladeless leaves and SAMs that are flat, rather than dome-shaped, and lack cell proliferation activity. This loss of function also causes reduced auxin signaling. Moreover, as is the case with Arabidopsis ESR1/DRN, NDL1 plays crucial roles in shoot regeneration. Importantly, we found that NDL1 is not expressed in the SAM but is expressed in leaf primordia. We propose that NDL1 cell autonomously regulates leaf development, but non-cell autonomously regulates SAM maintenance in rice.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Meristem/genetics , Meristem/metabolism , Mutation/genetics , Oryza/genetics , Oryza/metabolism
5.
Plant Cell Physiol ; 63(2): 265-278, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34865135

ABSTRACT

The molecular basis for leaf development, a major focus in developmental biology, remains unclear in the monocotyledonous grass, rice (Oryza sativa). Here, we performed a mutant screen in rice and identified an AP2-type transcription factor family protein, NARROW AND DWARF LEAF1 (NDL1). NDL1 is the ortholog of Arabidopsis thaliana (subsequently called Arabidopsis) ENHANCER OF SHOOT REGENERATION1 (ESR1)/DORNRÖSCHEN (DRN) and mediates leaf development and maintenance of the shoot apical meristem (SAM). Loss of function of NDL1 results in bladeless leaves and SAMs that are flat, rather than dome-shaped, and lack cell proliferation activity. This loss of function also causes reduced auxin signaling. Moreover, as is the case with Arabidopsis ESR1/DRN, NDL1 plays crucial roles in shoot regeneration. Importantly, we found that NDL1 is not expressed in the SAM but is expressed in leaf primordia. We propose that NDL1 cell autonomously regulates leaf development, but non-cell autonomously regulates SAM maintenance in rice.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Meristem/genetics , Meristem/metabolism , Mutation/genetics , Oryza/genetics , Oryza/metabolism
6.
PLoS Genet ; 17(5): e1009292, 2021 05.
Article in English | MEDLINE | ID: mdl-33970916

ABSTRACT

The plastochron, the time interval between the formation of two successive leaves, is an important determinant of plant architecture. We genetically and phenotypically investigated many-noded dwarf (mnd) mutants in barley. The mnd mutants exhibited a shortened plastochron and a decreased leaf blade length, and resembled previously reported plastochron1 (pla1), pla2, and pla3 mutants in rice. In addition, the maturation of mnd leaves was accelerated, similar to pla mutants in rice. Several barley mnd alleles were derived from three genes-MND1, MND4, and MND8. Although MND4 coincided with a cytochrome P450 family gene that is a homolog of rice PLA1, we clarified that MND1 and MND8 encode an N-acetyltransferase-like protein and a MATE transporter-family protein, which are respectively orthologs of rice GW6a and maize BIGE1 and unrelated to PLA2 or PLA3. Expression analyses of the three MND genes revealed that MND1 and MND4 were expressed in limited regions of the shoot apical meristem and leaf primordia, but MND8 did not exhibit a specific expression pattern around the shoot apex. In addition, the expression levels of the three genes were interdependent among the various mutant backgrounds. Genetic analyses using the double mutants mnd4mnd8 and mnd1mnd8 indicated that MND1 and MND4 regulate the plastochron independently of MND8, suggesting that the plastochron in barley is controlled by multiple genetic pathways involving MND1, MND4, and MND8. Correlation analysis between leaf number and leaf blade length indicated that both traits exhibited a strong negative association among different genetic backgrounds but not in the same genetic background. We propose that MND genes function in the regulation of the plastochron and leaf growth and revealed conserved and diverse aspects of plastochron regulation via comparative analysis of barley and rice.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Hordeum/growth & development , Hordeum/genetics , Plant Leaves/growth & development , Plant Leaves/genetics , Alleles , CRISPR-Cas Systems/genetics , Cell Division , Hordeum/cytology , Mutation , Oryza/genetics , Phenotype , Plant Cells , Plant Leaves/cytology , Time Factors
7.
BMC Genomics ; 22(1): 169, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750294

ABSTRACT

BACKGROUND: Rice leaves consist of three distinct regions along a proximal-distal axis, namely the leaf blade, sheath, and blade-sheath boundary region. Each region has a unique morphology and function, but the genetic programs underlying the development of each region are poorly understood. To fully elucidate rice leaf development and discover genes with unique functions in rice and grasses, it is crucial to explore genome-wide transcriptional profiles during the development of the three regions. RESULTS: In this study, we performed microarray analysis to profile the spatial and temporal patterns of gene expression in the rice leaf using dissected parts of leaves sampled in broad developmental stages. The dynamics in each region revealed that the transcriptomes changed dramatically throughout the progress of tissue differentiation, and those of the leaf blade and sheath differed greatly at the mature stage. Cluster analysis of expression patterns among leaf parts revealed groups of genes that may be involved in specific biological processes related to rice leaf development. Moreover, we found novel genes potentially involved in rice leaf development using a combination of transcriptome data and in situ hybridization, and analyzed their spatial expression patterns at high resolution. We successfully identified multiple genes that exhibit localized expression in tissues characteristic of rice or grass leaves. CONCLUSIONS: Although the genetic mechanisms of leaf development have been elucidated in several eudicots, direct application of that information to rice and grasses is not appropriate due to the morphological and developmental differences between them. Our analysis provides not only insights into the development of rice leaves but also expression profiles that serve as a valuable resource for gene discovery. The genes and gene clusters identified in this study may facilitate future research on the unique developmental mechanisms of rice leaves.


Subject(s)
Oryza , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome
8.
Development ; 146(13)2019 06 21.
Article in English | MEDLINE | ID: mdl-31118231

ABSTRACT

Asymmetric cell division is a key step in cellular differentiation in multicellular organisms. In plants, asymmetric zygotic division produces the apical and basal cells. The mitogen-activated protein kinase (MPK) cascade in Arabidopsis acts in asymmetric divisions such as zygotic division and stomatal development, but whether the effect on cellular differentiation of this cascade is direct or indirect following asymmetric division is not clear. Here, we report the analysis of a rice mutant, globular embryo 4 (gle4). In two- and four-cell-stage embryos, asymmetric zygotic division and subsequent cell division patterns were indistinguishable between the wild type and gle4 mutants. However, marker gene expression and transcriptome analyses showed that specification of the basal region was compromised in gle4 We found that GLE4 encodes MPK6 and that GLE4/MPK6 is essential in cellular differentiation rather than in asymmetric zygotic division. Our findings provide a new insight into the role of MPK in plant development. We propose that the regulation of asymmetric zygotic division is separate from the regulation of cellular differentiation that leads to apical-basal polarity.


Subject(s)
Asymmetric Cell Division/genetics , Mitogen-Activated Protein Kinase 6/physiology , Oryza , Zygote/cytology , Cell Division/genetics , Cloning, Molecular , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinase 6/genetics , Oryza/embryology , Oryza/enzymology , Oryza/genetics , Plants, Genetically Modified , Seeds/genetics , Seeds/metabolism
9.
Nat Commun ; 10(1): 619, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30728357

ABSTRACT

Axis formation is a fundamental issue in developmental biology. Axis formation and patterning in plant leaves is crucial for morphology and crop productivity. Here, we reveal the basis of proximal-distal patterning in rice leaves, which consist of a proximal sheath, a distal blade, and boundary organs formed between these two regions. Analysis of the three rice homologs of the Arabidopsis BLADE-ON-PETIOLE1 (BOP1) gene indicates that OsBOPs activate proximal sheath differentiation and suppress distal blade differentiation. Temporal expression changes of OsBOPs are responsible for the developmental changes in the sheath:blade ratio. We further identify that the change in the sheath:blade ratio during the juvenile phase is controlled by the miR156/SPL pathway, which modifies the level and pattern of expression of OsBOPs. OsBOPs are also essential for differentiation of the boundary organs. We propose that OsBOPs, the main regulators of proximal-distal patterning, control temporal changes in the sheath:blade ratio of rice leaves.


Subject(s)
Body Patterning , Gene Expression Regulation, Plant , Genes, Plant/genetics , Oryza/growth & development , Oryza/genetics , Plant Development/genetics , Plant Leaves/growth & development , Plant Leaves/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Differentiation/genetics , MicroRNAs/metabolism , Nuclear Proteins/metabolism , Oryza/anatomy & histology , Oryza/cytology , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Plant Proteins/genetics , Plant Stems/anatomy & histology , Plant Stems/genetics , Plant Stems/growth & development , Repressor Proteins/metabolism
10.
Development ; 145(7)2018 04 05.
Article in English | MEDLINE | ID: mdl-29567670

ABSTRACT

Regulation of cell proliferation is crucial for establishing the shape of plant leaves. We have identified MAKIBA3 (MKB3), a loss-of-function mutant of which exhibits a narrowed- and rolled-leaf phenotype in rice. MKB3 was found to be an ortholog of Arabidopsis ANGUSTIFOLIA3 (AN3), which positively regulates cell proliferation. The reduced leaf size of mkb3 plants with enlarged cells and the increased size of MKB3-overexpressing leaves with normal-sized cells indicate that MKB3 is a positive regulator of leaf proliferation and that mkb3 mutation triggers a compensation syndrome, as does Arabidopsis an3 Expression analysis revealed that MKB3 is predominantly expressed on the epidermis of leaf primordia, which is different from the location of AN3 A protein movement assay demonstrated that MKB3 moves from an MKB3-expressing domain to a non-expressing domain, which is required for normal leaf development. Our results suggest that rice MKB3 and Arabidopsis AN3 have conserved functions and effects on leaf development. However, the expression pattern of MKB3 and direction of protein movement are different between rice and Arabidopsis, which might reflect differences in leaf primordia development in these two species.


Subject(s)
Arabidopsis/metabolism , Cell Proliferation/genetics , Oryza/metabolism , Plant Leaves/growth & development , Trans-Activators/metabolism , Arabidopsis Proteins/metabolism , Cell Enlargement , Gene Expression Regulation, Plant , Mutation , Oryza/genetics , Phenotype , Plant Leaves/metabolism , Trans-Activators/genetics
11.
New Phytol ; 218(4): 1558-1569, 2018 06.
Article in English | MEDLINE | ID: mdl-29498045

ABSTRACT

Floods impede gas (O2 and CO2 ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis. The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood-prone areas.


Subject(s)
Adaptation, Physiological , Floods , Gases/metabolism , Genes, Plant , Hydrophobic and Hydrophilic Interactions , Oryza/genetics , Plant Leaves/physiology , Waxes/metabolism , Base Sequence , Biosynthetic Pathways , Genetic Complementation Test , Mutation/genetics , Oryza/physiology , Photosynthesis , Plant Epidermis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Plant Cell Physiol ; 59(2): 376-391, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29272531

ABSTRACT

In several eudicot species, one copy of each member of the WUSCHEL-RELATED HOMEOBOX (WOX) gene family, WOX1 and WOX3, is redundantly or differentially involved in lateral leaf outgrowth, whereas only the WOX3 gene regulating the lateral domain of leaf development has been reported in grass. In this study, we show that a WOX3 gene, LEAF LATERAL SYMMETRY1 (LSY1), regulates lateral leaf development in a different manner ftom that of other duplicated paralogs of WOX3, NARROW LEAF2 (NAL2)/NAL3, in rice. A loss-of-function mutant of LSY1 exhibited an asymmetrical defect from early leaf development, which is different from a symmetric defect in a double loss-of-function mutant of NAL2/3, whereas the expression of both genes was observed in a similar domain in the margins of leaf primordia. Unlike NAL2/3, overexpression of LSY1 produced malformed leaves whose margins were curled adaxially. Expression domains and the level of adaxial/abaxial marker genes were affected in the LSY1-overexpressing plants, indicating that LSY1 is involved in regulation of adaxial-abaxial patterning at the margins of the leaf primordia. Additive phenotypes in some leaf traits of lsy1 nal2/3 triple mutants and the unchanged level of NAL2/3 expression in the lsy1 background suggested that LSY1 regulates lateral leaf development independently of NAL2/3. Our results indicated that all of the rice WOX3 genes are involved in leaf lateral outgrowth, but the functions of LSY1 and NAL2/3 have diverged. We propose that the function of WOX3 and the regulatory mode of leaf development in rice are comparable with those of WOX1/WOX3 in eudicot species.


Subject(s)
Multigene Family , Organogenesis/genetics , Oryza/genetics , Oryza/metabolism , Plant Proteins/metabolism , Sequence Homology, Amino Acid , Base Sequence , Gene Expression Regulation, Plant , Genes, Plant , Models, Biological , Phenotype , Plant Leaves/cytology , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Reproduction
13.
Development ; 143(18): 3407-16, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27578792

ABSTRACT

Juvenile-to-adult phase transition is an important shift for the acquisition of adult vegetative characteristics and subsequent reproductive competence. We identified a recessive precocious (pre) mutant exhibiting a long leaf phenotype in rice. The long leaf phenotype is conspicuous in the second to the fourth leaves, which are juvenile and juvenile-to-adult transition leaves. We found that morphological and physiological traits, such as midrib formation, shoot meristem size, photosynthetic rate and plastochron, in juvenile and juvenile-to-adult transition stages of the pre mutant have precociously acquired adult characteristics. In agreement with these results, expression patterns of miR156 and miR172, which are microRNAs regulating phase change, support the accelerated juvenile-to-adult phase change in the pre mutant. The mutated gene encodes an allene oxide synthase (OsAOS1), which is a key enzyme for the biosynthesis of jasmonic acid (JA). The pre mutant showed a low level of JA and enhanced sensitivity to gibberellic acid, which promotes the phase change in some plant species. We also show that prolonged plastochron in the pre mutant is caused by accelerated PLASTOCHRON1 (PLA1) function. The present study reveals a substantial role of JA as a negative regulator of vegetative phase change.


Subject(s)
Cyclopentanes/metabolism , Oryza/metabolism , Oxylipins/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Oryza/genetics , Plant Proteins/genetics
14.
Breed Sci ; 66(3): 416-24, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27436952

ABSTRACT

Barley (Hordeum vulgare L.) is the fourth most-produced cereal in the world and is mainly utilized as animal feed and malts. Recently barley attracts considerable attentions as healthy food rich in dietary fiber. However, limited knowledge is available about developmental aspects of barley leaves. In the present study, we investigated barley narrow leafed dwarf1 (nld1) mutants, which exhibit thin leaves accompanied by short stature. Detailed histological analysis revealed that leaf marginal tissues, such as sawtooth hairs and sclerenchymatous cells, were lacked in nld1, suggesting that narrowed leaf of nld1 was attributable to the defective development of the marginal regions in the leaves. The defective marginal developments were also appeared in internodes and glumes in spikelets. Map-based cloning revealed that NLD1 encodes a WUSCHEL-RELATED HOMEOBOX 3 (WOX3), an ortholog of the maize NARROW SHEATH genes. In situ hybridization showed that NLD1 transcripts were localized in the marginal edges of leaf primordia from the initiating stage. From these results, we concluded that NLD1 plays pivotal role in the increase of organ width and in the development of marginal tissues in lateral organs in barley.

15.
Development ; 143(7): 1217-27, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26903508

ABSTRACT

Embryogenesis in rice is different from that of most dicotolydonous plants in that it shows a non-stereotypic cell division pattern, formation of dorsal-ventral polarity, and endogenous initiation of the radicle. To reveal the transcriptional features associated with developmental events during rice early embryogenesis, we used microarray analysis coupled with laser microdissection to obtain both spatial and temporal transcription profiles. Our results allowed us to determine spatial expression foci for each expressed gene in the globular embryo, which revealed the importance of phytohormone-related genes and a suite of transcription factors to early embryogenesis. Our analysis showed the polarized expression of a small number of genes along the apical-basal and dorsal-ventral axes in the globular embryo, which tended to fluctuate in later developmental stages. We also analyzed gene expression patterns in the early globular embryo and how this relates to expression in embryonic organs at later stages. We confirmed the accuracy of the expression patterns found by microarray analysis of embryo subdomains using in situ hybridization. Our study identified homologous genes from Arabidopsis thaliana with known functions in embryogenesis in addition to unique and uncharacterized genes that show polarized expression patterns during embryogenesis. The results of this study are presented in a database to provide a framework for spatiotemporal gene expression during rice embryogenesis, to serve as a resource for future functional analysis of genes, and as a basis for comparative studies of plant embryogenesis.


Subject(s)
Arabidopsis/embryology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Oryza/embryology , Plant Growth Regulators/genetics , Cell Division/physiology , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis
16.
Rice (N Y) ; 7(1): 25, 2014.
Article in English | MEDLINE | ID: mdl-25243048

ABSTRACT

BACKGROUND: The rice PLASTOCHRON (PLA) genes PLA1 and PLA2 regulate leaf maturation and the temporal pattern of leaf initiation. Although the function of PLA genes in the leaf initiation process has been analyzed, little is known about how they affect leaf growth. Previously, we suggested that PLA1 and PLA2 function downstream of the gibberellin (GA) signal transduction pathway. In the present study, we examined the phenotype of a double mutant of pla and slender rice 1 (slr1), which is a constitutive GA response mutant. By analyzing these double mutants, we discuss the relationship between PLA-related and GA-dependent pathways and the possible function of PLA genes in leaf growth. FINDINGS: Single slr1 and pla mutants exhibited elongated and dwarf phenotypes in the vegetative stage, respectively. The stature and leaf size of the pla1/slr1 and pla2/slr1 double mutants were intermediate between those of the pla and slr1 single mutants. However, the effects of slr1 on leaf elongation were markedly suppressed in the pla1 and pla2 mutant backgrounds. On the other hand, the change in cell length in the double mutants was almost the same as that in the single mutants. An expression analysis of genes involved in GA biosynthesis and catabolism indicated that feedback regulation functioned normally in the pla/slr1 double mutants. CONCLUSIONS: Our genetic results confirm that PLA genes regulate leaf growth downstream of the GA pathway. Our findings also suggest that PLA1 and PLA2 are partly required for GA-dependent leaf elongation, mainly by affecting cellular proliferation.

17.
Plant J ; 78(6): 927-36, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24654985

ABSTRACT

Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.


Subject(s)
Indoleacetic Acids/metabolism , Oryza/genetics , Plant Growth Regulators/metabolism , Plant Proteins/physiology , Tryptophan Transaminase/physiology , Amino Acid Sequence , Biological Transport/genetics , Cloning, Molecular , Molecular Sequence Data , Oryza/enzymology , Oryza/metabolism , Phenotype , Plant Proteins/chemistry , Plant Proteins/genetics , Sequence Alignment , Sequence Analysis, Protein , Tryptophan Transaminase/chemistry , Tryptophan Transaminase/genetics
18.
Plant Cell Physiol ; 55(1): 42-51, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24192297

ABSTRACT

Maintenance of organ separation is one of the essential phenomena for normal plant development. We have identified and analyzed ONION3 (ONI3), which is required for avoiding organ fusions in rice. Loss-of-function mutations of ONI3, which were identified as mutants with ectopic expression of KNOX genes in leaves and morphologically resembling KNOX overexpressors, showed abnormal organ fusions in developing shoots. The mutant seedlings showed fusions between neighboring organs and also within an organ; they stopped growing soon after germination and subsequently died. ONI3 was shown to encode an enzyme that is most similar to Arabidopsis HOTHEAD and is involved in biosynthesis of long-chain fatty acids. Expression analyses showed that ONI3 was specifically expressed in the outermost cell layer in the shoot apex throughout life cycle, and the oni3 mutants had an aberrant outermost cell layer. Our results together with previous studies suggest that long-chain fatty acids are required for avoiding organ fusions and promoting normal shoot development in rice.


Subject(s)
Mutation/genetics , Organogenesis , Oryza/growth & development , Oryza/genetics , Plant Proteins/genetics , Plant Shoots/growth & development , Plant Shoots/genetics , Cloning, Molecular , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Indoleacetic Acids/metabolism , Organogenesis/genetics , Plant Epidermis/cytology , Plant Epidermis/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/ultrastructure , Plant Proteins/metabolism , Plant Roots/anatomy & histology , Sequence Analysis, Protein , Waxes/metabolism
19.
Planta ; 238(1): 229-37, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23686337

ABSTRACT

Juvenile-to-adult phase change is an indispensable event which guarantees a successful life cycle. Phase change has been studied in maize, Arabidopsis and rice, but is mostly unknown in other species. Soybean/Fabaceae plants undergo drastic changes of shoot architecture at the early vegetative stage including phyllotactic change and leaf type alteration from simple to compound. These characteristics make soybean/Fabaceae plants an interesting taxon for investigating vegetative phase change. Following the expansion of two cotyledons, two simple leaves simultaneously emerge in opposite phyllotaxy. The phyllotaxy of the third and fourth leaves is not fixed; both opposite and distichous phyllotaxis are observed within the same population. Leaves were compound from the third leaf. But the third leaf was rarely simple. Morphological and quantitative changes in early vegetative phase were recognized in leaf size, leaf shape, number of trichomes, stipule size and shape, and shoot meristem shape. Two microRNA genes, miR156 and miR172, are known to be associated with vegetative phase change. Examination of the expression level revealed that miR156 expression was high in the first two leaves and subsequently down-regulated, and that of miR172 showed the inverse expression pattern. These expression patterns coincided with the case of other species. Taken all data together, the first and second leaves represent juvenile phase, the fifth and upper leaves adult phase, and the third and fourth leaves intermediate stage. Further investigation of soybean phase change would give fruitful understandings on plant development.


Subject(s)
Glycine max/growth & development , Plant Shoots/physiology , Flowers , Gene Expression Regulation, Plant , Meristem/growth & development , MicroRNAs , Photosynthesis , Plant Leaves/physiology , Plant Shoots/anatomy & histology , Time Factors
20.
Nucleic Acids Res ; 41(Database issue): D1214-21, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23180784

ABSTRACT

Similarity of gene expression across a wide range of biological conditions can be efficiently used in characterization of gene function. We have constructed a rice gene coexpression database, RiceFREND (http://ricefrend.dna.affrc.go.jp/), to identify gene modules with similar expression profiles and provide a platform for more accurate prediction of gene functions. Coexpression analysis of 27 201 genes was performed against 815 microarray data derived from expression profiling of various organs and tissues at different developmental stages, mature organs throughout the growth from transplanting until harvesting in the field and plant hormone treatment conditions, using a single microarray platform. The database is provided with two search options, namely, 'single guide gene search' and 'multiple guide gene search' to efficiently retrieve information on coexpressed genes. A user-friendly web interface facilitates visualization and interpretation of gene coexpression networks in HyperTree, Cytoscape Web and Graphviz formats. In addition, analysis tools for identification of enriched Gene Ontology terms and cis-elements provide clue for better prediction of biological functions associated with the coexpressed genes. These features allow users to clarify gene functions and gene regulatory networks that could lead to a more thorough understanding of many complex agronomic traits.


Subject(s)
Databases, Genetic , Gene Expression Profiling , Gene Regulatory Networks , Genes, Plant , Oryza/genetics , Internet , Molecular Sequence Annotation , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...