Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Protoplasma ; 261(1): 65-75, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37462717

ABSTRACT

Solar energy absorbed by plants can be redistributed between photosystems in the process termed "state transitions" (ST). ST represents a reversible transition of a part of the PSII light harvesting complex (L-LHCII) between photosystem II (PSII) and photosystem I (PSI) in response to the change in light spectral composition. The present work demonstrates a slower development of the state 1 to state 2 transition, i.e., L-LHCII transition from PSII to PSI, in the leaves of dicotyledonous arabidopsis (Arabidopsis thaliana) than in the leaves of monocotyledonous barley (Hordeum vulgare) plants that was assessed by the measurement of chlorophyll a fluorescence at 77 K and of chlorophyll a fluorescence at room temperature. It is known that the first step of the state 1 to state 2 transition is phosphorylation of Lhcb1 and Lhcb2 proteins; however, we detected no difference in the rate of accumulation of these phosphorylated proteins in the studied plants. Therefore, the parameters, which possibly affect the second step of this transition, i.e., the migration of L-LHCII complexes along the thylakoid membrane, were evaluated. Spin-probe EPR measurements demonstrated that the thylakoid membranes viscosity in arabidopsis was higher compared to that in barley. Moreover, confocal microscopy data evidenced the different size of chloroplasts in the leaves of the studied species being larger in arabidopsis. The obtained results suggest that the observed deference in the development of the state 1 to state 2 transition in arabidopsis and barley is caused by the slower L-LHCII migration rate in arabidopsis than in barley plants rather than by the difference in the Lhcb1 and Lhcb2 phosphorylation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hordeum , Arabidopsis/metabolism , Lighting , Chlorophyll A/metabolism , Light-Harvesting Protein Complexes/metabolism , Arabidopsis Proteins/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Phosphorylation , Light
2.
Biochemistry (Mosc) ; 88(8): 1045-1060, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37758306

ABSTRACT

This review analyzes data available in the literature on the rates, characteristics, and mechanisms of oxygen reduction to a superoxide anion radical at the sites of photosynthetic electron transport chain where this reduction has been established. The existing assumptions about the role of the components of these sites in this process are critically examined using thermodynamic approaches and results of the recent studies. The process of O2 reduction at the acceptor side of PSI, which is considered the main site of this process taking place in the photosynthetic chain, is described in detail. Evolution of photosynthetic apparatus in the context of controlling the leakage of electrons to O2 is explored. The reasons limiting application of the results obtained with the isolated segments of the photosynthetic chain to estimate the rates of O2 reduction at the corresponding sites in the intact thylakoid membrane are discussed.

3.
Plants (Basel) ; 12(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37176821

ABSTRACT

The knockout of the At2g28210 gene encoding α-carbonic anhydrase 2 (α-CA2) in Arabidopsis thaliana (Columbia) led to alterations in photosynthetic processes. The effective quantum yields of both photosystem II (PSII) and photosystem I (PSI) were higher in α-carbonic anhydrase 2 knockout plants (α-CA2-KO), and the reduction state of plastoquinone pool was lower than in wild type (WT). The electron transport rate in the isolated thylakoids measured with methyl viologen was higher in α-CA2-KO plants. The amounts of reaction centers of PSII and PSI were similar in WT and α-CA2-KO plants. The non-photochemical quenching of chlorophyll a fluorescence in α-CA2-KO leaves was lower at the beginning of illumination, but became slightly higher than in WT leaves when the steady state was achieved. The degree of state transitions in the leaves was lower in α-CA2-KO than in WT plants. Measurements of the electrochromic carotenoid absorbance shift (ECS) revealed that the light-dependent pH gradient (ΔpH) across the thylakoid membrane was lower in the leaves of α-CA2-KO plants than in WT plants. The starch content in α-CA2-KO leaves was lower than in WT plants. The expression levels of the genes encoding chloroplast CAs in α-CA2-KO changed noticeably, whereas the expression levels of genes of cytoplasmic CAs remained almost the same. It is proposed that α-CA2 may be situated in the chloroplasts.

4.
Plants (Basel) ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501340

ABSTRACT

An homozygous mutant line of Arabidopsis thaliana with a knocked out At4g20990 gene encoding thylakoid carbonic anhydrase αCA4 was created using a CRISPR/Cas9 genome editing system. The effects of the mutation were compared with those in two mutant lines obtained by the T-DNA insertion method. In αCA4 knockouts of all three lines, non-photochemical quenching of chlorophyll a fluorescence was lower than in the wild type (WT) plants due to a decrease in its energy-dependent component. The αCA4 knockout also affected the level of expression of the genes encoding all proteins of the PSII light harvesting antennae, the genes encoding cytoplasmic and thylakoid CAs and the genes induced by plant immune signals. The production level of starch synthesis during the light period, as well as the level of its utilization during the darkness, were significantly higher in these mutants than in WT plants. These data confirm that the previously observed differences between insertional mutants and WT plants were not the result of the negative effects of T-DNA insertion transgenesis but the results of αCA4 gene knockout. Overall, the data indicate the involvement of αCA4 in the photosynthetic reactions in the thylakoid membrane, in particular in processes associated with the protection of higher plants' photosynthetic apparatus from photoinhibition.

5.
Plants (Basel) ; 11(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36015416

ABSTRACT

The carbonic anhydrase (CA) activities of the preparations of cytoplasm, mitochondria, chloroplast stroma, and chloroplast thylakoids, as well as the expression levels of genes encoding αCA1, αCA2, αCA4, ßCA1, ßCA2, ßCA3, ßCA4, ßCA5, and ßCA6, were measured in the leaves of Arabidopsis thaliana plants, acclimated to different CO2 content in the air: low (150 ppm, lCO2), normal (450 ppm, nCO2), and high (1200 ppm, hCO2). To evaluate the photosynthetic apparatus operation, the carbon assimilation and chlorophyll a fluorescence were measured under the same conditions. It was found that the CA activities of the preparations of cytoplasm, chloroplast stroma, and chloroplast thylakoids measured after two weeks of acclimation were higher, the lower CO2 concentration in the air. That was preceded by an increase in the expression levels of genes encoding the cytoplasmic form of ßCA1, and other cytoplasmic CAs, ßCA2, ßCA3, and ßCA4, as well as of the chloroplast CAs, ßCA5, and the stromal forms of ßCA1 in a short-term range 1-2 days after the beginning of the acclimation. The dependence on the CO2 content in the air was most noticeable for the CA activity of the preparations of the stroma; it was two orders higher in lCO2 plants than in hCO2 plants. The CA activity of thylakoid membranes from lCO2 plants was higher than that in nCO2 and hCO2 plants; however, in these plants, a significant increase in the expression levels of the genes encoding αCA2 and αCA4 located in thylakoid membranes was not observed. The CA activity of mitochondria and the expression level of the mitochondrial ßCA6 gene did not depend on the content of carbon dioxide. Taken together, the data implied that in the higher plants, the supply of inorganic carbon to carboxylation sites is carried out with the cooperative functioning of CAs located in the cytoplasm and CAs located in the chloroplasts.

6.
Biochemistry (Mosc) ; 86(10): 1243-1255, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34903154

ABSTRACT

The review presents current data on carbonic anhydrases found in various compartments of photosynthetic cells of higher plants. The available data on expression of genes some of carbonic anhydrases and its dependence on environmental factors and plant age are considered. The existing hypotheses on the functions of carbonic anhydrases of plasma membrane, cytoplasm, as well as of stroma and thylakoids of chloroplast, first of all, the hypothesis on participation of these enzymes in supplying carbon dioxide molecules to ribulose-bisphosphate carboxylase (Rubisco) are analyzed. Difficulties of establishing physiological role of the plant cell carbonic anhydrase are discussed in detail.


Subject(s)
Carbonic Anhydrases/metabolism , Chloroplasts/metabolism , Plants/metabolism , Carbon Dioxide/metabolism , Photosynthesis , Plants/enzymology , Ribulose-Bisphosphate Carboxylase/metabolism
7.
Front Plant Sci ; 12: 662082, 2021.
Article in English | MEDLINE | ID: mdl-34512677

ABSTRACT

We studied bicarbonate-induced stimulation of photophosphorylation in thylakoids isolated from leaves of Arabidopsis thaliana plants. This stimulation was not observed in thylakoids of wild-type in the presence of mafenide, a soluble carbonic anhydrase inhibitor, and was absent in thylakoids of two mutant lines lacking the gene encoding alpha carbonic anhydrase 5 (αCA5). Using mass spectrometry, we revealed the presence of αCA5 in stromal thylakoid membranes of wild-type plants. A possible mechanism of the photophosphorylation stimulation by bicarbonate that involves αCA5 is proposed.

8.
Protoplasma ; 258(2): 249-262, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33118061

ABSTRACT

The review describes the structures of plant carbonic anhydrases (CAs), enzymes catalyzing the interconversion of inorganic carbon forms and belonging to different families, as well as the interaction of inhibitors and activators of CA activity with the active sites of CAs in representatives of these families. We outline the data that shed light on the location of CAs in green cells of C3 plants, algae and angiosperms, with the emphasis on the recently obtained data. The proven and proposed functions of CAs in these organisms are listed. The possibility of the involvement of several chloroplast CAs in acceleration of the conversion of bicarbonate to CO2 and in supply of CO2 for fixation by Rubisco is particularly considered. Special attention is paid to CAs in various parts of thylakoids and to discussion about current knowledge of their possible physiological roles. The review states that, despite the significant progress in application of the mutants with suppressed CAs synthesis, the approach based on the use of the inhibitors of CA activity in some cases remains quite effective. Combination of these two approaches, namely determining the effect of CA activity inhibitors in plants with certain knocked-out CA genes, turns out to be very useful for understanding the functions of other CAs.


Subject(s)
Carbonic Anhydrases/metabolism , Plant Cells/chemistry , Plants/chemistry
9.
Funct Plant Biol ; 47(11): 959-969, 2020 10.
Article in English | MEDLINE | ID: mdl-32564779

ABSTRACT

We investigated acclimatory responses of Arabidopsis plants to drought and salinity conditions before the appearance of obvious signs of damage caused by these factors. We detected changes indicating an increase in the reduction level of the chloroplast plastoquinone pool (PQ pool) 5-7 days after introduction of the stress factors. After 10-14 days, a decrease in the size of PSII light harvesting antenna was observed in plants under conditions of drought and salinity. This was confirmed by a decrease in content of PSII antenna proteins and by downregulation of gene expression levels of these proteins under the stress conditions. No changes in values of performance index and maximum quantum yield of PSII were detected. Under drought and salinity, the content of hydrogen peroxide in leaves was higher than in control leaves. Thus, we propose that reduction of the size of PSII antenna represents one of the universal mechanisms of acclimation of higher plants to stress factors and the downsizing already begins to manifest under mild stress conditions. Both the PQ pool reduction state and the hydrogen peroxide content are important factors needed for the observed rearrangement.


Subject(s)
Arabidopsis , Photosystem II Protein Complex , Acclimatization , Arabidopsis/genetics , Plant Leaves , Plastoquinone
10.
Front Plant Sci ; 11: 211, 2020.
Article in English | MEDLINE | ID: mdl-32231675

ABSTRACT

Recruitment of H2O as the final donor of electrons for light-governed reactions in photosynthesis has been an utmost breakthrough, bursting the evolution of life and leading to the accumulation of O2 molecules in the atmosphere. O2 molecule has a great potential to accept electrons from the components of the photosynthetic electron transfer chain (PETC) (so-called the Mehler reaction). Here we overview the Mehler reaction mechanisms, specifying the changes in the structure of the PETC of oxygenic phototrophs that probably had occurred as the result of evolutionary pressure to minimize the electron flow to O2. These changes are warranted by the fact that the efficient electron flow to O2 would decrease the quantum yield of photosynthesis. Moreover, the reduction of O2 leads to the formation of reactive oxygen species (ROS), namely, the superoxide anion radical and hydrogen peroxide, which cause oxidative stress to plant cells if they are accumulated at a significant amount. From another side, hydrogen peroxide acts as a signaling molecule. We particularly zoom in into the role of photosystem I (PSI) and the plastoquinone (PQ) pool in the Mehler reaction.

11.
Protoplasma ; 257(2): 489-499, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31784823

ABSTRACT

The role of α-carbonic anhydrase 4 (α-CA4) in photosynthetic machinery functioning in thylakoid membranes was studied, using Arabidopsis thaliana wild type plants (WT) and the plants with knockout of At4g20990 gene encoding α-CA4 (αCA4-mut) grown both in low light (LL, 80 µmol quanta m-2 s-1) or in high light (HL, 400 µmol quanta m-2 s-1). It was found that a content of PsbS protein, one of determinants of non-photochemical quenching of chlorophyll fluorescence, increased in mutants by 30% and 100% compared with WT plants in LL and in HL, respectively. Violaxanthin cycle pigments content and violaxanthin deepoxidase activity in HL were also higher in αCA4-mut than in WT plants. The content of PSII core protein, D1, when adapting to HL, decreased in WT plants and remained unchanged in mutants. This indicates, that the decrease in the content of Lhcb1 and Lhcb2 proteins in HL (Rudenko et al. Protoplasma 55(1):69-78, 2018) in WT plants resulted from decrease of both Photosystem II (PSII) complex content and content of these proteins in this complex, whereas in αCA4-mut plants from the latter process only. The absence of α-CA4 did not affect the rate of electron transport through Photosystem I (PSI) in thylakoids of mutant vs. WT, but led to 50-80% increase in the rate of electron transport from H2O to QA, evidencing the location of α-CA4 close to PSII. The latter difference may raise the question about its causal connection with the difference in the D1 protein content change during adapting to increased illumination in the presence and the absence of α-CA4.


Subject(s)
Carbonic Anhydrases/metabolism , Photosynthesis/physiology , Plant Leaves/chemistry
12.
Physiol Plant ; 166(1): 181-198, 2019 May.
Article in English | MEDLINE | ID: mdl-30706486

ABSTRACT

The review covers data representing the plastoquinone pool as the component integrated in plant antioxidant defense and plant signaling. The main goal of the review is to discuss the evidence describing the plastoquinone-involved biochemical reactions, which are incorporated in maintaining the sustainability of higher plants to stress conditions. In this context, the analysis of the reactions of various redox forms of plastoquinone with oxygen species is presented. The review describes how these reactions can constitute both the antioxidant and signaling functions of the pool. Special attention is paid to the reaction of superoxide anion radicals with plastohydroquinone molecules, producing hydrogen peroxide as signal molecules. Attention is also given to the processes affecting the redox state of the plastoquinone pool because the redox state of the pool is of special importance for antioxidant defense and signaling.


Subject(s)
Plants/metabolism , Plastoquinone/metabolism , Antioxidants/metabolism , Photosynthesis/physiology , Plastoquinone/analogs & derivatives , Superoxides/metabolism
13.
FEBS Lett ; 592(19): 3221-3228, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30179252

ABSTRACT

The plastoquinone (PQ)-pool in chloroplast thylakoid membranes is a key electron carrier in the photosynthetic electron transport chain (PETC), and its redox state plays an essential role in the control of plant metabolism. Oxygen reduction in thylakoid membranes produces superoxide anion radicals ( O 2 · - ), which may react with the PQ-pool. Here, using isolated thylakoids, we show for the first time the oxidation of the PQ-pool by O 2 · - . The xanthine-xanthine oxidase system was used to supply O 2 · - externally to the thylakoid membrane and the redox state of the PQ-pool was monitored by tracking chlorophyll a fluorescence. We propose that, in vivo, the reaction of  O 2 · - produced in Photosystem I with reduced PQ (plastohydroquinone) creates hydrogen peroxide, which serves as a messenger that signals the redox state of the PETC.


Subject(s)
Chloroplasts/metabolism , Plastoquinone/metabolism , Superoxides/metabolism , Thylakoids/metabolism , Oxidation-Reduction , Pisum sativum/metabolism , Plant Leaves/metabolism
14.
Protoplasma ; 255(1): 69-78, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28643084

ABSTRACT

Effect of knockout of the At4g20990 gene encoding α-carbonic anhydrase 4 (α-CA4) in Arabidopsis thaliana in plants grown in low light (LL, 80 µmol photons m-2 s-1) or in high light (HL, 400 µmol photons m-2 s-1) under long (LD, 16 h) or short (SD, 8 h) day length was studied. In α-CA4 knockout plants, under all studied conditions, the non-photochemical quenching was lower; the decrease was more pronounced under HL. This pointed to α-CA4 implication in the processes leading to energy dissipation in PSII antenna. In this context the content of major antenna proteins Lhcb1 and Lhcb2 was lower in α-CA4 knockouts than in wild-type (WT) plants under all growth conditions. The expression level of lhcb2 gene was also lower in mutants grown under LD, LL and HL in comparison to WT. At the same time, this level was higher in mutants grown under SD, LL and it was the same under SD, HL. Overall, the data showed that the knockout of the At4g20990 gene affected both the contents of proteins of PSII light-harvesting complex and the expression level of genes encoding these proteins, with peculiarities dependent on day length. These data together with the fact of a decrease of non-photochemical quenching of leaf chlorophyll a fluorescence in α-CA4-mut as compared with that in WT plants implied that α-CA4 participates in acclimation of photosynthetic apparatus to light intensity, possibly playing important role in the photoprotection. The role of this CA can be especially important in plants growing under high illumination conditions.


Subject(s)
Arabidopsis/genetics , Light-Harvesting Protein Complexes/metabolism , Light , Photosystem II Protein Complex/metabolism
15.
Funct Plant Biol ; 45(2): 102-110, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32291025

ABSTRACT

Reduction of O2 molecule to superoxide radical, O2•-, in the photosynthetic electron transport chain is the first step of hydrogen peroxide, H2O2, production in chloroplasts in the light. The mechanisms of O2 reduction by ferredoxin, by the components of the plastoquinone pool, and by the electron transfer cofactors in PSI are analysed. The data indicating that O2•- and H2O2 can be produced both outside and within thylakoid membrane are presented. The H2O2 production in the chloroplast stroma is described as a result of either dismutation of O2•- or its reduction by stromal reductants. Formation of H2O2 within thylakoid membrane in the reaction of O2•- with plastohydroquinone is examined. The significance of both ways of H2O2 formation for specificity of the signal being sent by photosynthetic electron transport chain to cell adaptation systems is discussed.

16.
Physiol Plant ; 161(1): 45-55, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28256000

ABSTRACT

Light-dependent oxygen reduction in the photosynthetic electron transfer chain, i.e. the Mehler reaction, has been studied using isolated pea thylakoids. The role of the plastoquinone pool in the Mehler reaction was investigated in the presence of dinitrophenyl ether of 2-iodo-4-nitrothymol (DNP-INT), the inhibitor of plastohydroquinone oxidation by cytochrome b6/f complex. Oxygen reduction rate in the presence of DNP-INT was higher than in the absence of the inhibitor in low light at pH 6.5 and 7.6, showing that the capacity of the plastoquinone pool to reduce molecular oxygen in this case exceeded that of the entire electron transfer chain. In the presence of DNP-INT, appearance of superoxide anion radicals outside thylakoid membrane represented approximately 60% of the total superoxide anion radicals produced. The remaining 40% of the produced superoxide anion radicals was suggested to be trapped by plastohydroquinone molecules within thylakoid membrane, leading to the formation of hydrogen peroxide (H2 O2 ). To validate the reaction of superoxide anion radical with plastohydroquinone, xanthine/xanthine oxidase system was integrated with thylakoid membrane in order to generate superoxide anion radical in close vicinity of plastohydroquinone. Addition of xanthine/xanthine oxidase to the thylakoid suspension resulted in a decrease in the reduction level of the plastoquinone pool in the light. The obtained data provide additional clarification of the aspects that the plastoquinone pool is involved in both reduction of oxygen to superoxide anion radicals and reduction of superoxide anion radicals to H2 O2 . Significance of the plastoquinone pool involvement in the Mehler reaction for the acclimation of plants to light conditions is discussed.


Subject(s)
Chloroplasts/metabolism , Photosynthesis , Pisum sativum/metabolism , Plastoquinone/metabolism , Chloroplasts/radiation effects , Electron Spin Resonance Spectroscopy , Electron Transport/radiation effects , Hydrogen Peroxide/metabolism , Light , Oxygen Consumption/radiation effects , Pisum sativum/radiation effects , Photosynthesis/radiation effects , Superoxides/metabolism , Thylakoids/metabolism
17.
Plant Cell Physiol ; 57(7): 1397-1404, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27016099

ABSTRACT

The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP+ under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed.


Subject(s)
Chloroplasts/metabolism , Oxygen/metabolism , Photosynthesis , Electron Transport , Ferredoxins/metabolism , Oxidation-Reduction
18.
J Exp Bot ; 66(22): 7151-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26324464

ABSTRACT

Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light.


Subject(s)
Acclimatization , Hydrogen Peroxide/metabolism , Light , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Signal Transduction , Acclimatization/radiation effects , Hordeum , Photosynthesis/radiation effects , Photosystem II Protein Complex/radiation effects , Plant Leaves/metabolism , Signal Transduction/radiation effects
19.
FEBS Lett ; 588(23): 4364-8, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25311539

ABSTRACT

O2 reduction was investigated in photosystem I (PSI) complexes isolated from cyanobacteria Synechocystis sp. PCC 6803 wild type (WT) and menB mutant strain, which is unable to synthesize phylloquinone and contains plastoquinone at the quinone-binding site A1. PSI complexes from WT and menB mutant exhibited different dependencies of O2 reduction on light intensity, namely, the values of O2 reduction rate in WT did not reach saturation at high intensities, in contrast to the values in menB mutant. The obtained results suggest the immediate phylloquinone involvement in the light-induced O2 reduction by PSI.


Subject(s)
Light , Oxygen/metabolism , Photosystem I Protein Complex/metabolism , Vitamin K 1/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Coenzymes/chemistry , Coenzymes/metabolism , Electron Transport/radiation effects , Gene Knockout Techniques , Models, Molecular , Molecular Conformation , Mutation , Synechocystis/enzymology , Synechocystis/genetics , Synechocystis/metabolism , Synechocystis/radiation effects
20.
Biochim Biophys Acta ; 1817(8): 1314-21, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22421105

ABSTRACT

Light-induced generation of superoxide radicals and hydrogen peroxide in isolated thylakoids has been studied with a lipophilic spin probe, cyclic hydroxylamine 1-hydroxy-4-isobutyramido-2,2,6,6-tetramethylpiperidinium (TMT-H) to detect superoxide radicals, and the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitron (4-POBN) to detect hydrogen peroxide-derived hydroxyl radicals. Accumulation of the radical products of the above reactions has been followed using electron paramagnetic resonance. It is found that the increased production of superoxide radicals and hydrogen peroxide in higher light is due to the enhanced production of these species within the thylakoid membrane, rather than outside the membrane. Fluorescent probe Amplex red, which forms fluorescent product, resorufin, in the reaction with hydrogen peroxide, has been used to detect hydrogen peroxide outside isolated chloroplasts using confocal microscopy. Resorufin fluorescence outside the chloroplasts is found to be suppressed by 60% in the presence of the inhibitor of aquaporins, acetazolamide (AZA), indicating that hydrogen peroxide can diffuse through the chloroplast envelope aquaporins. It is demonstrated that AZA also inhibits carbonic anhydrase activity of the isolated envelope. We put forward a hypothesis that carbonic anhydrase presumably can be attached to the envelope aquaporins. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Subject(s)
Aquaporins/physiology , Chloroplasts/metabolism , Hydrogen Peroxide/metabolism , Oxygen/metabolism , Photosynthesis , Acetazolamide/metabolism , Diffusion , Electron Transport , Light , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL