Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nat Rev Neurosci ; 25(5): 289-312, 2024 May.
Article in English | MEDLINE | ID: mdl-38609551

ABSTRACT

Language behaviour is complex, but neuroscientific evidence disentangles it into distinct components supported by dedicated brain areas or networks. In this Review, we describe the 'core' language network, which includes left-hemisphere frontal and temporal areas, and show that it is strongly interconnected, independent of input and output modalities, causally important for language and language-selective. We discuss evidence that this language network plausibly stores language knowledge and supports core linguistic computations related to accessing words and constructions from memory and combining them to interpret (decode) or generate (encode) linguistic messages. We emphasize that the language network works closely with, but is distinct from, both lower-level - perceptual and motor - mechanisms and higher-level systems of knowledge and reasoning. The perceptual and motor mechanisms process linguistic signals, but, in contrast to the language network, are sensitive only to these signals' surface properties, not their meanings; the systems of knowledge and reasoning (such as the system that supports social reasoning) are sometimes engaged during language use but are not language-selective. This Review lays a foundation both for in-depth investigations of these different components of the language processing pipeline and for probing inter-component interactions.


Subject(s)
Brain , Language , Humans , Brain/physiology , Nerve Net/physiology , Neural Pathways/physiology , Brain Mapping
2.
Clin Chem ; 70(3): 528-537, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431279

ABSTRACT

BACKGROUND: Lipid profiling is central for coronary artery disease (CAD) risk assessment. Nonadherence or unreported use of lipid-lowering drugs, particularly statins, can significantly complicate the association between lipid profile measures and CAD clinical outcomes. By combining medication history evaluation with statin analysis in plasma, we determined the effects of inaccurately reported statin use on lipid profile measures and their association with CAD risk. METHODS: We compared medication history of statin use with statin concentration measurements, by liquid chromatography-tandem mass spectrometry, in 690 participants undergoing coronary angiography (63 ± 11 years of age). Nominal logistic regression was employed to model CAD diagnosis with statin measurements, phenotypic, and lipid profile characteristics. RESULTS: Medication history of statin use was confirmed by statin assay for 81% of the patients. Surprisingly, statins were detected in 46% of patients without statin use records. Nonreported statin use was disproportionately higher among older participants. Stratifying samples by statin history resulted in underestimated LDL-lipid measures. Apolipoprotein B concentrations had a significant inverse CAD association, which became nonsignificant upon re-stratification using the statin assay data. CONCLUSIONS: Our study uncovered prominent discrepancies between medication records and actual statin use measured by mass spectrometry. We showed that inaccurate statin use assessments may lead to overestimation and underestimation of LDL levels in statin user and nonuser categories, exaggerating the reverse epidemiology association between LDL levels and CAD diagnosis. Combining medication history and quantitative statin assay data can significantly improve the design, analysis, and interpretation of clinical and epidemiological studies.


Subject(s)
Coronary Artery Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Coronary Angiography/methods , Coronary Artery Disease/diagnosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipids , Risk Assessment , Risk Factors , Middle Aged , Aged
3.
Trends Cogn Sci ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508911

ABSTRACT

Large language models (LLMs) have come closest among all models to date to mastering human language, yet opinions about their linguistic and cognitive capabilities remain split. Here, we evaluate LLMs using a distinction between formal linguistic competence (knowledge of linguistic rules and patterns) and functional linguistic competence (understanding and using language in the world). We ground this distinction in human neuroscience, which has shown that formal and functional competence rely on different neural mechanisms. Although LLMs are surprisingly good at formal competence, their performance on functional competence tasks remains spotty and often requires specialized fine-tuning and/or coupling with external modules. We posit that models that use language in human-like ways would need to master both of these competence types, which, in turn, could require the emergence of separate mechanisms specialized for formal versus functional linguistic competence.

4.
Cogn Sci ; 47(11): e13386, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38009752

ABSTRACT

Word co-occurrence patterns in language corpora contain a surprising amount of conceptual knowledge. Large language models (LLMs), trained to predict words in context, leverage these patterns to achieve impressive performance on diverse semantic tasks requiring world knowledge. An important but understudied question about LLMs' semantic abilities is whether they acquire generalized knowledge of common events. Here, we test whether five pretrained LLMs (from 2018's BERT to 2023's MPT) assign a higher likelihood to plausible descriptions of agent-patient interactions than to minimally different implausible versions of the same event. Using three curated sets of minimal sentence pairs (total n = 1215), we found that pretrained LLMs possess substantial event knowledge, outperforming other distributional language models. In particular, they almost always assign a higher likelihood to possible versus impossible events (The teacher bought the laptop vs. The laptop bought the teacher). However, LLMs show less consistent preferences for likely versus unlikely events (The nanny tutored the boy vs. The boy tutored the nanny). In follow-up analyses, we show that (i) LLM scores are driven by both plausibility and surface-level sentence features, (ii) LLM scores generalize well across syntactic variants (active vs. passive constructions) but less well across semantic variants (synonymous sentences), (iii) some LLM errors mirror human judgment ambiguity, and (iv) sentence plausibility serves as an organizing dimension in internal LLM representations. Overall, our results show that important aspects of event knowledge naturally emerge from distributional linguistic patterns, but also highlight a gap between representations of possible/impossible and likely/unlikely events.


Subject(s)
Language , Semantics , Male , Humans , Knowledge , Reading , Judgment
5.
J Neurosci ; 43(34): 6061-6083, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37532464

ABSTRACT

Exposure to elevated doses of ionizing radiation, such as those in therapeutic procedures, catastrophic accidents, or space exploration, increases the risk of cognitive dysfunction. The full range of radiation-induced cognitive deficits is unknown, partly because commonly used tests may be insufficiently sensitive or may not be adequately tuned for assessing the fine behavioral features affected by radiation. Here, we asked whether γ-radiation might affect learning, memory, and the overall ability to adapt behavior to cope with a challenging environment (cognitive/behavioral flexibility). We developed a new behavioral assay, the context discrimination Morris water maze (cdMWM) task, which is hippocampus-dependent and requires the integration of various contextual cues and the adjustment of search strategies. We exposed male mice to 1 or 5 Gy of γ rays and, at different time points after irradiation, trained them consecutively in spatial MWM, reversal MWM, and cdMWM tasks, and assessed their learning, navigational search strategies, and memory. Mice exposed to 5 Gy performed successfully in the spatial and reversal MWM tasks; however, in the cdMWM task 6 or 8 weeks (but not 3 weeks) after irradiation, they demonstrated transient learning deficit, decreased use of efficient spatially precise search strategies during learning, and, 6 weeks after irradiation, memory deficit. We also observed impaired neurogenesis after irradiation and selective activation of 12-week-old newborn neurons by specific components of cdMWM training paradigm. Thus, our new behavioral paradigm reveals the effects of γ-radiation on cognitive flexibility and indicates an extended timeframe for the functional maturation of new hippocampal neurons.SIGNIFICANCE STATEMENT Exposure to radiation can affect cognitive performance and cognitive flexibility - the ability to adapt to changed circumstances and demands. The full range of consequences of irradiation on cognitive flexibility is unknown, partly because of a lack of suitable models. Here, we developed a new behavioral task requiring mice to combine various types of cues and strategies to find a correct solution. We show that animals exposed to γ-radiation, despite being able to successfully solve standard problems, show delayed learning, deficient memory, and diminished use of efficient navigation patterns in circumstances requiring adjustments of previously used search strategies. This new task could be applied in other settings for assessing the cognitive changes induced by aging, trauma, or disease.


Subject(s)
Hippocampus , Learning , Mice , Male , Animals , Hippocampus/physiology , Neurogenesis/physiology , Cognition/physiology , Neurons/physiology , Maze Learning/physiology
6.
Cereb Cortex ; 33(19): 10380-10400, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37557910

ABSTRACT

The relationship between language and thought is the subject of long-standing debate. One claim states that language facilitates categorization of objects based on a certain feature (e.g. color) through the use of category labels that reduce interference from other, irrelevant features. Therefore, language impairment is expected to affect categorization of items grouped by a single feature (low-dimensional categories, e.g. "Yellow Things") more than categorization of items that share many features (high-dimensional categories, e.g. "Animals"). To test this account, we conducted two behavioral studies with individuals with aphasia and an fMRI experiment with healthy adults. The aphasia studies showed that selective low-dimensional categorization impairment was present in some, but not all, individuals with severe anomia and was not characteristic of aphasia in general. fMRI results revealed little activity in language-responsive brain regions during both low- and high-dimensional categorization; instead, categorization recruited the domain-general multiple-demand network (involved in wide-ranging cognitive tasks). Combined, results demonstrate that the language system is not implicated in object categorization. Instead, selective low-dimensional categorization impairment might be caused by damage to brain regions responsible for cognitive control. Our work adds to the growing evidence of the dissociation between the language system and many cognitive tasks in adults.


Subject(s)
Aphasia , Language , Humans , Adult , Brain/diagnostic imaging , Aphasia/diagnostic imaging
7.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175638

ABSTRACT

Designing studies for lipid-metabolism-related biomarker discovery is challenging because of the high prevalence of various statin and fibrate usage for lipid-lowering therapies. When the statin and fibrate use is determined based on self-reports, patient adherence to the prescribed statin dose regimen remains unknown. A potentially more accurate way to verify a patient's medication adherence is by direct analytical measurements. Current analytical methods are prohibitive because of the limited panel of drugs per test and large sample volume requirement that is not available from archived samples. A 4-min-long method was developed for the detection of seven statins and three fibrates using 10 µL of plasma analyzed via reverse-phase liquid chromatography and tandem mass spectrometry. The method was applied to the analysis of 941 archived plasma samples collected from patients before cardiac catheterization. When statin use was self-reported, statins were detected in 78.6% of the samples. In the case of self-reported atorvastatin use, the agreement with detection was 90.2%. However, when no statin use was reported, 42.4% of the samples had detectable levels of statins, with a similar range of concentrations as the samples from the self-reported statin users. The method is highly applicable in population studies designed for biomarker discovery or diet and lifestyle intervention studies, where the accuracy of statin or fibrate use may strongly affect the statistical evaluation of the biomarker data.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Fibric Acids/therapeutic use , Chromatography, Liquid , Tandem Mass Spectrometry , Atorvastatin/therapeutic use , Biomarkers
8.
Nat Commun ; 14(1): 1638, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37015925

ABSTRACT

The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.


Subject(s)
COVID-19 , Humans , Child , Adult , SARS-CoV-2 , Critical Illness , Cytokines , Fibrinogen
9.
Nat Commun ; 14(1): 149, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627290

ABSTRACT

Evolution of SARS-CoV-2 in immunocompromised hosts may result in novel variants with changed properties. While escape from humoral immunity certainly contributes to intra-host evolution, escape from cellular immunity is poorly understood. Here, we report a case of long-term COVID-19 in an immunocompromised patient with non-Hodgkin's lymphoma who received treatment with rituximab and lacked neutralizing antibodies. Over the 318 days of the disease, the SARS-CoV-2 genome gained a total of 40 changes, 34 of which were present by the end of the study period. Among the acquired mutations, 12 reduced or prevented the binding of known immunogenic SARS-CoV-2 HLA class I antigens. By experimentally assessing the effect of a subset of the escape mutations, we show that they resulted in a loss of as much as ~1% of effector CD8 T cell response. Our results indicate that CD8 T cell escape represents a major underappreciated contributor to SARS-CoV-2 evolution in humans.


Subject(s)
COVID-19 , T-Lymphocytes, Cytotoxic , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
10.
Biomolecules ; 12(10)2022 10 08.
Article in English | MEDLINE | ID: mdl-36291648

ABSTRACT

Aberrations in lipid and lipoprotein metabolic pathways can lead to numerous diseases, including cardiovascular disease, diabetes, neurological disorders, and cancer. The integration of quantitative lipid and lipoprotein profiling of human plasma may provide a powerful approach to inform early disease diagnosis and prevention. In this study, we leveraged data-driven quantitative targeted lipidomics and proteomics to identify specific molecular changes associated with different metabolic risk categories, including hyperlipidemic, hypercholesterolemic, hypertriglyceridemic, hyperglycemic, and normolipidemic conditions. Based on the quantitative characterization of serum samples from 146 individuals, we have determined individual lipid species and proteins that were significantly up- or down-regulated relative to the normolipidemic group. Then, we established protein-lipid topological networks for each metabolic category and linked dysregulated proteins and lipids with defined metabolic pathways. To evaluate the differentiating power of integrated lipidomics and proteomics data, we have built an artificial neural network model that simultaneously and accurately categorized the samples from each metabolic risk category based on the determined lipidomics and proteomics profiles. Together, our findings provide new insights into molecular changes associated with metabolic risk conditions, suggest new condition-specific associations between apolipoproteins and lipids, and may inform new biomarker discovery in lipid metabolism-associated disorders.


Subject(s)
Lipid Metabolism Disorders , Lipidomics , Humans , Proteomics , Lipid Metabolism , Lipids , Biomarkers/metabolism
11.
Hepatology ; 75(1): 154-169, 2022 01.
Article in English | MEDLINE | ID: mdl-34433228

ABSTRACT

BACKGROUND AND AIMS: Thioesterase superfamily member 2 (Them2) is highly expressed in liver and oxidative tissues, where it hydrolyzes long-chain fatty acyl-CoA esters to free fatty acids and CoA. Although mice globally lacking Them2 (Them2-/- ) are protected against diet-induced obesity, hepatic steatosis (HS), and insulin resistance (IR), liver-specific Them2-/- mice remain susceptible. The aim of this study was to test whether Them2 activity in extrahepatic oxidative tissues is a primary determinant of HS and IR. APPROACH AND RESULTS: Upon observing IR and up-regulation of Them2 in skeletal, but not cardiac, muscle of high-fat-diet (HFD)-fed wild-type compared to Them2-/- mice, we created mice with Them2 specifically deleted in skeletal (S-Them2-/- ) and cardiac muscle (C-Them2-/- ), as well as in adipose tissue (A-Them2-/- ). When fed an HFD, S-Them2-/- , but not C-Them2-/- or A-Them2-/- , mice exhibited reduced weight gain and improved glucose homeostasis and insulin sensitivity. Reconstitution of Them2 expression in skeletal muscle of global Them2-/- mice, using adeno-associated virus, was sufficient to restore excess weight gain. Increased rates of fatty acid oxidation in skeletal muscle of S-Them2-/- mice contributed to protection from HFD-induced HS by increasing VLDL triglyceride secretion rates in response to greater demand. Increases in insulin sensitivity were further attributable to alterations in production of skeletal muscle metabolites, including short-chain fatty acids, branched-chain amino acids, and pentose phosphate pathway intermediates, as well as in expression of myokines that modulate insulin responsiveness. CONCLUSIONS: These results reveal a key role for skeletal muscle Them2 in the pathogenesis of HS and IR and implicate it as a target in the management of NAFLD.


Subject(s)
Insulin Resistance/genetics , Lipid Metabolism/genetics , Muscle, Skeletal/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Thiolester Hydrolases/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Oxidation-Reduction , Thiolester Hydrolases/genetics , Up-Regulation
12.
J Mass Spectrom Adv Clin Lab ; 22: 34-42, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34939053

ABSTRACT

Large epidemiological studies often require sample transportation and storage, presenting unique considerations when applying advanced lipidomics techniques. The goal of this study was to acquire lipidomics data on plasma and serum samples stored at potential preanalytical conditions (e.g., thawing, extracting, evaporating), systematically monitoring lipid species for a period of one month. Split aliquots of 10 plasma samples and 10 serum samples from healthy individuals were kept in three temperature-related environments: refrigerator, laboratory benchtop, or heated incubator. Samples were analyzed at six different time points over 28 days using a Bligh & Dyer lipid extraction protocol followed by direct infusion into a lipidomics platform using differential mobility with tandem mass spectrometry. The observed concentration changes over time were evaluated relative to method and inter-individual biological variability. In addition, to evaluate the effect of lipase enzyme levels on concentration changes during storage, we compared corresponding fasting and post-prandial plasma samples collected from 5 individuals. Based on our data, a series of low abundance free fatty acid (FFA), diacylglycerol (DAG), and cholesteryl ester (CE) species were identified as potential analytical markers for degradation. These FFA and DAG species are typically produced by endogenous lipases from numerous triacylglycerols (TAGs), and certain high abundance phosphatidylcholines (PCs). The low concentration CEs, which appeared to increase several fold, were likely mass-isobars from oxidation of other high concentration CEs. Although the concentration changes of the high abundant TAG, PC, and CE precursors remained within method variability, the concentration trends of FFA, DAG, and oxidized CE products should be systematically monitored over time to inform analysts about possible pre-analytical biases due to degradation in the study sample sets.

13.
Front Microbiol ; 12: 662028, 2021.
Article in English | MEDLINE | ID: mdl-33936018

ABSTRACT

Pigs have long been recognized as "mixing vessels" in which new viruses are formed by reassortment involving various influenza virus lineages (avian, animal, human). However, surveillance of swine influenza viruses only gained real significance after the 2009 pandemic. A fundamentally important point is the fact that there is still no regular surveillance of swine flu in Russia, and the role of swine viruses is underestimated since, as a rule, they do not cause serious disease in animals. Since the pig population in Russia is large, it is obvious that the lack of monitoring and insufficient study of swine influenza evolution constitutes a gap in animal influenza surveillance, not only for Russia, but globally. A 6 year joint effort enabled identification of SIV subtypes that circulate in the pig population of Russia's European geographic region. The swine influenza viruses isolated were antigenically and genetically diverse. Some were similar to human influenza viruses of A(H1N1)pdm09 and A(H3N2) subtype, while others were reassortant A(H1pdm09N2) and A(H1avN2) and were antigenically distinct from human H1N1 and H1N1pdm09 strains. Analysis of swine serum samples collected throughout the seasons showed that the number of sera positive for influenza viruses has increased in recent years. This indicates that swine populations are highly susceptible to infection with human influenza viruses. It also stresses the need for regular SIV surveillance, monitoring of viral evolution, and strengthening of pandemic preparedness.

14.
Nat Commun ; 12(1): 649, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510171

ABSTRACT

The ongoing pandemic of SARS-CoV-2 presents novel challenges and opportunities for the use of phylogenetics to understand and control its spread. Here, we analyze the emergence of SARS-CoV-2 in Russia in March and April 2020. Combining phylogeographic analysis with travel history data, we estimate that the sampled viral diversity has originated from at least 67 closely timed introductions into Russia, mostly in late February to early March. All but one of these introductions were not from China, suggesting that border closure with China has helped delay establishment of SARS-CoV-2 in Russia. These introductions resulted in at least 9 distinct Russian lineages corresponding to domestic transmission. A notable transmission cluster corresponded to a nosocomial outbreak at the Vreden hospital in Saint Petersburg; phylodynamic analysis of this cluster reveals multiple (2-3) introductions each giving rise to a large number of cases, with a high initial effective reproduction number of 3.0 [1.9, 4.3].


Subject(s)
Basic Reproduction Number/statistics & numerical data , COVID-19/epidemiology , COVID-19/transmission , Genome, Viral/genetics , SARS-CoV-2/genetics , Humans , Mutation Rate , Phylogeography , Russia/epidemiology , Whole Genome Sequencing
15.
Neurobiol Lang (Camb) ; 2(2): 176-201, 2021.
Article in English | MEDLINE | ID: mdl-37216147

ABSTRACT

The ability to combine individual concepts of objects, properties, and actions into complex representations of the world is often associated with language. Yet combinatorial event-level representations can also be constructed from nonverbal input, such as visual scenes. Here, we test whether the language network in the human brain is involved in and necessary for semantic processing of events presented nonverbally. In Experiment 1, we scanned participants with fMRI while they performed a semantic plausibility judgment task versus a difficult perceptual control task on sentences and line drawings that describe/depict simple agent-patient interactions. We found that the language network responded robustly during the semantic task performed on both sentences and pictures (although its response to sentences was stronger). Thus, language regions in healthy adults are engaged during a semantic task performed on pictorial depictions of events. But is this engagement necessary? In Experiment 2, we tested two individuals with global aphasia, who have sustained massive damage to perisylvian language areas and display severe language difficulties, against a group of age-matched control participants. Individuals with aphasia were severely impaired on the task of matching sentences to pictures. However, they performed close to controls in assessing the plausibility of pictorial depictions of agent-patient interactions. Overall, our results indicate that the left frontotemporal language network is recruited but not necessary for semantic processing of nonverbally presented events.

16.
Elife ; 92020 12 15.
Article in English | MEDLINE | ID: mdl-33319744

ABSTRACT

Computer programming is a novel cognitive tool that has transformed modern society. What cognitive and neural mechanisms support this skill? Here, we used functional magnetic resonance imaging to investigate two candidate brain systems: the multiple demand (MD) system, typically recruited during math, logic, problem solving, and executive tasks, and the language system, typically recruited during linguistic processing. We examined MD and language system responses to code written in Python, a text-based programming language (Experiment 1) and in ScratchJr, a graphical programming language (Experiment 2); for both, we contrasted responses to code problems with responses to content-matched sentence problems. We found that the MD system exhibited strong bilateral responses to code in both experiments, whereas the language system responded strongly to sentence problems, but weakly or not at all to code problems. Thus, the MD system supports the use of novel cognitive tools even when the input is structurally similar to natural language.


Subject(s)
Brain/physiology , Cognition , Comprehension , Executive Function , Software , Adult , Brain/diagnostic imaging , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Young Adult
17.
Elife ; 92020 03 04.
Article in English | MEDLINE | ID: mdl-32129762

ABSTRACT

ARL13B is a regulatory GTPase highly enriched in cilia. Complete loss of Arl13b disrupts cilia architecture, protein trafficking and Sonic hedgehog signaling. To determine whether ARL13B is required within cilia, we knocked in a cilia-excluded variant of ARL13B (V358A) and showed it retains all known biochemical function. We found that ARL13BV358A protein was expressed but could not be detected in cilia, even when retrograde ciliary transport was blocked. We showed Arl13bV358A/V358A mice are viable and fertile with normal Shh signal transduction. However, in contrast to wild type cilia, Arl13bV358A/V358A cells displayed short cilia and lacked ciliary ARL3 and INPP5E. These data indicate that ARL13B's role within cilia can be uncoupled from its function outside of cilia. Furthermore, these data imply that the cilia defects upon complete absence of ARL13B do not underlie the alterations in Shh transduction, which is unexpected given the requirement of cilia for Shh transduction.


Subject(s)
ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Cilia/metabolism , Hedgehog Proteins/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Base Sequence , CRISPR-Cas Systems , Embryonic Development/genetics , Gene Editing , Gene Expression , Mice , Mice, Knockout , Mutation , Phenotype
18.
Polymers (Basel) ; 11(6)2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31226755

ABSTRACT

This study was dedicated to the investigation of poly(vinylidene fluoride) (PVDF) micropillar arrays obtained by soft lithography followed by phase inversion at a low temperature. Reduced graphene oxide (rGO) was incorporated into the PVDF as a nucleating filler. The piezoelectric properties of the PVDF-rGO composite micropillars were explored via piezo-response force microscopy (PFM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that α, ß, and γ phases co-existed in all studied samples, with a predominance of the γ phase. The piezoresponse force microscopy (PFM) data provided the local piezoelectric response of the PVDF micropillars, which exhibited a temperature-induced downward dipole orientation in the pristine PVDF micropillars. The addition of rGO into the PVDF matrix resulted in a change in the preferred polarization direction, and the piezo-response phase angle changed from -120° to 20°-40°. The pristine PVDF and PVDF loaded with 0.1 wt % of rGO after low-temperature quenching were found to possess a piezoelectric response of 86 and 87 pm/V respectively, which are significantly higher than the |d33eff| in the case of imprinted PVDF 64 pm/V. Thus, the addition of rGO significantly affected the domain orientation (polarization) while quenching increased the piezoelectric response.

19.
Hepatology ; 70(2): 496-510, 2019 08.
Article in English | MEDLINE | ID: mdl-30516845

ABSTRACT

In nonalcoholic fatty liver disease (NAFLD), triglycerides accumulate within the liver because the rates of fatty acid accrual by uptake from plasma and de novo synthesis exceed elimination by mitochondrial oxidation and secretion as very low-density lipoprotein (VLDL) triglycerides. Thioesterase superfamily member 2 (Them2) is an acyl-coenzyme A (CoA) thioesterase that catalyzes the hydrolysis of fatty acyl-CoAs into free fatty acids plus CoASH. Them2 is highly expressed in the liver, as well as other oxidative tissues. Mice globally lacking Them2 are resistant to diet-induced obesity and hepatic steatosis, and exhibit improved glucose homeostasis. These phenotypes are attributable, at least in part, to roles of Them2 in the suppression of thermogenesis in brown adipose tissue and insulin signaling in skeletal muscle. To elucidate the hepatic function of Them2, we created mice with liver-specific deletion of Them2 (L-Them2-/- ). Although L-Them2-/- mice were not protected against excess weight gain, hepatic steatosis or glucose intolerance, they exhibited marked decreases in plasma triglyceride and apolipoprotein B100 concentrations. These were attributable to reduced rates of VLDL secretion owing to decreased incorporation of plasma-derived fatty acids into triglycerides. The absence of hepatic steatosis in L-Them2-/- mice fed chow was explained by compensatory increases in rates of fatty acid oxidation and by decreased de novo lipogenesis in high fat-fed mice. Consistent with a role for Them2 in hepatic VLDL secretion, THEM2 levels were increased in livers of obese patients with NAFLD characterized by simple steatosis. Conclusion: Them2 functions in the liver to direct fatty acids toward triglyceride synthesis for incorporation into VLDL particles. When taken together with its functions in brown adipose and muscle, these findings suggest that Them2 is a target for the management of NAFLD and dyslipidemia.


Subject(s)
Fatty Acids/metabolism , Lipoproteins, VLDL/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Thiolester Hydrolases/physiology , Triglycerides/biosynthesis , Animals , Humans , Male , Mice , Non-alcoholic Fatty Liver Disease/complications , Obesity/complications , Obesity/metabolism , Triglycerides/metabolism
20.
Pharmaceutics ; 10(4)2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30257514

ABSTRACT

Porous inorganic nanostructured materials are widely used nowadays as drug delivery carriers due to their adventurous features: suitable architecture, large surface area and stability in the biological fluids. Among the different types of inorganic porous materials, silica, calcium carbonate, and calcium phosphate have received significant attention in the last decade. The use of porous inorganic materials as drug carriers for cancer therapy, gene delivery etc. has the potential to improve the life expectancy of the patients affected by the disease. The main goal of this review is to provide general information on the current state of the art of synthesis of the inorganic porous particles based on silica, calcium carbonate and calcium phosphate. Special focus is dedicated to the loading capacity, controllable release of drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic field, and ultrasound). Moreover, the diverse compounds to deliver with silica, calcium carbonate and calcium phosphate particles, ranging from the commercial drugs to genetic materials are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...