Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928496

ABSTRACT

The tumor microenvironment (TME) is crucial in tumor development, metastasis, and response to immunotherapy. DNA methylation can regulate the TME without altering the DNA sequence. However, research on the methylation-driven TME in clear-cell renal cell carcinoma (ccRCC) is still lacking. In this study, integrated DNA methylation and RNA-seq data were used to explore methylation-driven genes (MDGs). Immune scores were calculated using the ESTIMATE, which was employed to identify TME-related genes. A new signature connected with methylation-regulated TME using univariate, multivariate Cox regression and LASSO regression analyses was developed. This signature consists of four TME-MDGs, including AJAP1, HOXB9, MYH14, and SLC6A19, which exhibit high methylation and low expression in tumors. Validation was performed using qRT-PCR which confirmed their downregulation in ccRCC clinical samples. Additionally, the signature demonstrated stable predictive performance in different subtypes of ccRCC. Risk scores are positively correlated with TMN stages, immune cell infiltration, tumor mutation burden, and adverse outcomes of immunotherapy. Interestingly, the expression of four TME-MDGs are highly correlated with the sensitivity of first-line drugs in ccRCC treatment, especially pazopanib. Molecular docking indicates a high affinity binding between the proteins and pazopanib. In summary, our study elucidates the comprehensive role of methylation-driven TME in ccRCC, aiding in identifying patients sensitive to immunotherapy and targeted therapy, and providing new therapeutic targets for ccRCC treatment.


Subject(s)
Carcinoma, Renal Cell , DNA Methylation , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , Tumor Microenvironment , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Tumor Microenvironment/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Pyrimidines/therapeutic use , Indazoles/therapeutic use , Indazoles/pharmacology , Sulfonamides/therapeutic use , Sulfonamides/pharmacology , Biomarkers, Tumor/genetics , Female , Molecular Docking Simulation , Gene Expression Profiling/methods , Male
2.
J Neuroendocrinol ; 36(5): e13384, 2024 05.
Article in English | MEDLINE | ID: mdl-38516965

ABSTRACT

Psychosocial stress negatively impacts reproductive function by inhibiting pulsatile luteinizing hormone (LH) secretion. The posterodorsal medial amygdala (MePD) is responsible in part for processing stress and modulating the reproductive axis. Activation of the neurokinin 3 receptor (NK3R) suppresses the gonadotropin-releasing hormone (GnRH) pulse generator, under hypoestrogenic conditions, and NK3R activity in the amygdala has been documented to play a role in stress and anxiety. We investigate whether NK3R activation in the MePD is involved in mediating the inhibitory effect of psychosocial stress on LH pulsatility in ovariectomised female mice. First, we administered senktide, an NK3R agonist, into the MePD and monitored the effect on pulsatile LH secretion. We then delivered SB222200, a selective NK3R antagonist, intra-MePD in the presence of predator odour, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Senktide administration into the MePD dose-dependently suppresses pulsatile LH secretion. Moreover, NK3R signalling in the MePD mediates TMT-induced suppression of the GnRH pulse generator, which we verified using a mathematical model. The model verifies our experimental findings: (i) predator odour exposure inhibits LH pulses, (ii) activation of NK3R in the MePD inhibits LH pulses and (iii) NK3R antagonism in the MePD blocks stressor-induced inhibition of LH pulse frequency in the absence of ovarian steroids. These results demonstrate for the first time that NK3R neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator.


Subject(s)
Luteinizing Hormone , Quinolines , Receptors, Neurokinin-3 , Signal Transduction , Stress, Psychological , Substance P/analogs & derivatives , Animals , Female , Receptors, Neurokinin-3/metabolism , Receptors, Neurokinin-3/antagonists & inhibitors , Receptors, Neurokinin-3/agonists , Luteinizing Hormone/metabolism , Stress, Psychological/metabolism , Mice , Signal Transduction/physiology , Signal Transduction/drug effects , Corticomedial Nuclear Complex/metabolism , Corticomedial Nuclear Complex/drug effects , Corticomedial Nuclear Complex/physiology , Peptide Fragments/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Mice, Inbred C57BL , Amygdala/metabolism , Amygdala/drug effects
3.
J Mol Endocrinol ; 72(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38085702

ABSTRACT

The exact neural construct underlying the dynamic secretion of gonadotrophin-releasing hormone (GnRH) has only recently been identified despite the detection of multiunit electrical activity volleys associated with pulsatile luteinising hormone (LH) secretion four decades ago. Since the discovery of kisspeptin/neurokinin B/dynorphin neurons in the mammalian hypothalamus, there has been much research into the role of this neuronal network in controlling the oscillatory secretion of gonadotrophin hormones. In this review, we provide an update of the progressive application of cutting-edge techniques combined with mathematical modelling by the neuroendocrine community, which are transforming the functional investigation of the GnRH pulse generator. Understanding the nature and function of the GnRH pulse generator can greatly inform a wide range of clinical studies investigating infertility treatments.


Subject(s)
Gonadotropin-Releasing Hormone , Luteinizing Hormone , Animals , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Neurokinin B/metabolism , Dynorphins/metabolism , Kisspeptins/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Mammals/metabolism
4.
Endocrinology ; 164(6)2023 04 17.
Article in English | MEDLINE | ID: mdl-37246581

ABSTRACT

Corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) are central to the stress response. Chemogenetic activation of PVN CRH neurons decreases LH pulse frequency but the mechanism is unknown. In the present study, optogenetic stimulation of PVN CRH neurons suppressed LH pulse frequency in estradiol-replaced ovariectomized CRH-cre mice, and this effect was augmented or attenuated by intra-PVN GABAA or GABAB receptor antagonism, respectively. PVN CRH neurons signal to local GABA neurons, which may provide a possible indirect mechanism by which PVN CRH neurons suppress LH pulse frequency. Optogenetic stimulation of potential PVN GABAergic projection terminals in the hypothalamic arcuate nucleus in ovariectomized estradiol-replaced Vgat-cre-tdTomato mice via an optic fiber implanted in the arcuate nucleus suppressed LH pulse frequency. To further determine whether PVN CRH neurons signal through PVN GABA neurons to suppress LH pulsatility, we combined recombinase mice with intersectional vectors to selectively target these neurons. CRH-cre::Vgat-FlpO mice expressing the stimulatory opsin ChRmine in non-GABAergic CRH neurons alone or in combination with the inhibitory opsin NpHR3.3 in non-CRH-expressing GABA neurons in the PVN were used. Optogenetic stimulation of non-GABAergic CRH neurons suppressed pulsatile LH secretion; however, LH pulse frequency was not affected when CRH neurons were stimulated and PVN GABA neurons were simultaneously inhibited. Together, these studies demonstrate that suppression of LH pulse frequency in response to PVN CRH neuronal activation is mediated by GABAergic signalling intrinsic to the PVN and may incorporate PVN GABAergic projection to the hypothalamic GnRH pulse generator.


Subject(s)
Corticotropin-Releasing Hormone , Gonadotropin-Releasing Hormone , Mice , Female , Animals , Corticotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary Hormone-Releasing Hormones/pharmacology , Hypothalamus/metabolism , GABAergic Neurons/metabolism , Estradiol/pharmacology
5.
Peptides ; 162: 170961, 2023 04.
Article in English | MEDLINE | ID: mdl-36731655

ABSTRACT

Optical systems and genetic engineering technologies have made it possible to control neurons and unravel neuronal circuit behavior with high temporal and spatial resolution. The application of optogenetic strategies to understand the physiology of kisspeptin neuronal circuits has evolved in recent years among the neuroendocrine community. Kisspeptin neurons are fundamentally involved in controlling mammalian reproduction but also are implicated in numerous other physiological processes, including but not limited to feeding, energy expenditure, core body temperature and behavior. We conducted a review aiming to shed light on the novel findings obtained from in vitro and in vivo optogenetic studies interrogating kisspeptin neuronal circuits to date. Understanding the function of kisspeptin networks in the brain can greatly inform a wide range of clinical studies investigating infertility treatments, gender identity, metabolic disorders, hot flushes and psychosexual disorders.


Subject(s)
Kisspeptins , Optogenetics , Humans , Animals , Female , Male , Kisspeptins/metabolism , Gender Identity , Neurons/metabolism , Brain/metabolism , Mammals
6.
Endocrinology ; 164(1)2022 11 14.
Article in English | MEDLINE | ID: mdl-36453253

ABSTRACT

Psychological stress is linked to infertility by suppressing the hypothalamic GnRH pulse generator. The posterodorsal subnucleus of the medial amygdala (MePD) is an upstream regulator of GnRH pulse generator activity and displays increased neuronal activation during psychological stress. The MePD is primarily a GABAergic nucleus with a strong GABAergic projection to hypothalamic reproductive centers; however, their functional significance has not been determined. We hypothesize that MePD GABAergic signalling mediates psychological stress-induced suppression of pulsatile LH secretion. We selectively inhibited MePD GABA neurons during psychological stress in ovariectomized (OVX) Vgat-cre-tdTomato mice to determine the effect on stress-induced suppression of pulsatile LH secretion. MePD GABA neurons were virally infected with inhibitory hM4DGi-designer receptor exclusively activated by designer drugs (DREADDs) to selectively inhibit MePD GABA neurons. Furthermore, we optogenetically stimulated potential MePD GABAergic projection terminals in the hypothalamic arcuate nucleus (ARC) and determined the effect on pulsatile LH secretion. MePD GABA neurons in OVX female Vgat-cre-tdTomato mice were virally infected to express channelrhodopsin-2 and MePD GABAergic terminals in the ARC were selectively stimulated by blue light via an optic fiber implanted in the ARC. DREADD-mediated inhibition of MePD GABA neurons blocked predator odor and restraint stress-induced suppression of LH pulse frequency. Furthermore, sustained optogenetic stimulation at 10 and 20 Hz of MePD GABAergic terminals in the ARC suppressed pulsatile LH secretion. These results show for the first time that GABAergic signalling in the MePD mediates psychological stress-induced suppression of pulsatile LH secretion and suggest a functionally significant MePD GABAergic projection to the hypothalamic GnRH pulse generator.


Subject(s)
Corticomedial Nuclear Complex , GABAergic Neurons , Luteinizing Hormone , Animals , Female , Mice , Corticomedial Nuclear Complex/metabolism , GABAergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Gonadotropin-Releasing Hormone/metabolism , Luteinizing Hormone/metabolism , Stress, Psychological/metabolism
7.
Front Neurosci ; 16: 1006594, 2022.
Article in English | MEDLINE | ID: mdl-36583101

ABSTRACT

Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria. However, our knowledge of neuropeptide signaling in echinoderms is largely based on bioinformatic and experimental analysis of eleutherozoans-Asterozoa (starfish and brittle stars) and Echinozoa (sea urchins and sea cucumbers). Little is known about neuropeptide signaling in crinoids (feather stars and sea lilies), which are a sister clade to the Eleutherozoa. Therefore, we have analyzed transcriptome/genome sequence data from three feather star species, Anneissia japonica, Antedon mediterranea, and Florometra serratissima, to produce the first comprehensive identification of neuropeptide precursors in crinoids. These include representatives of bilaterian neuropeptide precursor families and several predicted crinoid neuropeptide precursors. Using A. mediterranea as an experimental model, we have investigated the expression of selected neuropeptides in larvae (doliolaria), post-metamorphic pentacrinoids and adults, providing new insights into the cellular architecture of crinoid nervous systems. Thus, using mRNA in situ hybridization F-type SALMFamide precursor transcripts were revealed in a previously undescribed population of peptidergic cells located dorso-laterally in doliolaria. Furthermore, using immunohistochemistry a calcitonin-type neuropeptide was revealed in the aboral nerve center, circumoral nerve ring and oral tube feet in pentacrinoids and in the ectoneural and entoneural compartments of the nervous system in adults. Moreover, functional analysis of a vasopressin/oxytocin-type neuropeptide (crinotocin), which is expressed in the brachial nerve of the arms in A. mediterranea, revealed that this peptide causes a dose-dependent change in the mechanical behavior of arm preparations in vitro-the first reported biological action of a neuropeptide in a crinoid. In conclusion, our findings provide new perspectives on neuropeptide signaling in echinoderms and the foundations for further exploration of neuropeptide expression/function in crinoids as a sister clade to eleutherozoan echinoderms.

8.
Endocrinology ; 164(2)2022 12 19.
Article in English | MEDLINE | ID: mdl-36445688

ABSTRACT

The posterodorsal subnucleus of the medial amygdala (MePD) is an upstream modulator of the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes. Inhibition of MePD urocortin-3 (Ucn3) neurons prevents psychological stress-induced suppression of luteinizing hormone (LH) pulsatility while blocking the stress-induced elevations in corticosterone (CORT) secretion in female mice. We explore the neurotransmission and neural circuitry suppressing the gonadotropin-releasing hormone (GnRH) pulse generator by MePD Ucn3 neurons and we further investigate whether MePD Ucn3 efferent projections to the hypothalamic paraventricular nucleus (PVN) control CORT secretion and LH pulsatility. Ucn3-cre-tdTomato female ovariectomized (OVX) mice were unilaterally injected with adeno-associated virus (AAV)-channelrhodopsin 2 (ChR2) and implanted with optofluid cannulae targeting the MePD. We optically activated Ucn3 neurons in the MePD with blue light at 10 Hz and monitored the effect on LH pulses. Next, we combined optogenetic stimulation of MePD Ucn3 neurons with pharmacological antagonism of GABAA or GABAB receptors with bicuculline or CGP-35348, respectively, as well as a combination of NMDA and AMPA receptor antagonists, AP5 and CNQX, respectively, and observed the effect on pulsatile LH secretion. A separate group of Ucn3-cre-tdTomato OVX mice with 17ß-estradiol replacement were unilaterally injected with AAV-ChR2 in the MePD and implanted with fiber-optic cannulae targeting the PVN. We optically stimulated the MePD Ucn3 efferent projections in the PVN with blue light at 20 Hz and monitored the effect on CORT secretion and LH pulses. We reveal for the first time that activation of Ucn3 neurons in the MePD inhibits GnRH pulse generator frequency via GABA and glutamate signaling within the MePD, while MePD Ucn3 projections to the PVN modulate the HPG and HPA axes.


Subject(s)
Corticomedial Nuclear Complex , Luteinizing Hormone , Urocortins , Animals , Female , Mice , Corticomedial Nuclear Complex/metabolism , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism , Gonadotropin-Releasing Hormone/metabolism
9.
J Neuroendocrinol ; 34(11): e13207, 2022 11.
Article in English | MEDLINE | ID: mdl-36305576

ABSTRACT

Kisspeptin neurons in the arcuate nucleus of the hypothalamus generate gonadotrophin-releasing hormone (GnRH) pulses, and act as critical initiators of functional gonadotrophin secretion and reproductive competency. However, kisspeptin in other brain regions, most notably the posterodorsal subnucleus of the medial amygdala (MePD), plays a significant modulatory role over the hypothalamic kisspeptin population; our recent studies using optogenetics have shown that low-frequency light stimulation of MePD kisspeptin results in increased luteinsing hormone pulse frequency. Nonetheless, the neurochemical pathways that underpin this regulatory function remain unknown. To study this, we have utilised an optofluid technology, precisely combining optogenetic stimulation with intra-nuclear pharmacological receptor antagonism, to investigate the neurotransmission involved in this circuitry. We have shown experimentally and verified using a mathematical model that functional neurotransmission of both GABA and glutamate is a requirement for effective modulation of the GnRH pulse generator by amygdala kisspeptin neurons.


Subject(s)
Gonadotropin-Releasing Hormone , Kisspeptins , Female , Mice , Animals , Kisspeptins/metabolism , Gonadotropin-Releasing Hormone/metabolism , Glutamic Acid/metabolism , Luteinizing Hormone/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Amygdala/metabolism , gamma-Aminobutyric Acid/metabolism
10.
Front Endocrinol (Lausanne) ; 13: 893029, 2022.
Article in English | MEDLINE | ID: mdl-35655799

ABSTRACT

Post-traumatic stress disorder impedes pubertal development and disrupts pulsatile LH secretion in humans and rodents. The posterodorsal sub-nucleus of the medial amygdala (MePD) is an upstream modulator of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator, pubertal timing, as well as emotional processing and anxiety. Psychosocial stress exposure alters neuronal activity within the MePD increasing the expression of Urocortin3 (Ucn3) and its receptor corticotropin-releasing factor type-2 receptor (CRFR2) while enhancing the inhibitory output from the MePD to key hypothalamic reproductive centres. We test the hypothesis that psychosocial stress, processed by the MePD, is relayed to the hypothalamic GnRH pulse generator to delay puberty in female mice. We exposed C57Bl6/J female mice to the predator odor, 2,4,5-Trimethylthiazole (TMT), during pubertal transition and examined the effect on pubertal timing, pre-pubertal LH pulses and anxiety-like behaviour. Subsequently, we virally infected Ucn3-cre-tdTomato female mice with stimulatory DREADDs targeting MePD Ucn3 neurons and determined the effect on pubertal timing and pre-pubertal LH pulse frequency. Exposure to TMT during pubertal development delayed puberty, suppressed pre-pubertal LH pulsatility and enhanced anxiety-like behaviour, while activation of MePD Ucn3 neurons reduced LH pulse frequency and delayed puberty. Early psychosocial stress exposure decreases GnRH pulse generator frequency delaying puberty while inducing anxiety-behaviour in female mice, an effect potentially involving Ucn3 neurons in the MePD.


Subject(s)
Luteinizing Hormone , Urocortins , Amygdala/metabolism , Animals , Female , Gonadotropin-Releasing Hormone/metabolism , Luteinizing Hormone/metabolism , Mice , Sexual Maturation , Urocortins/metabolism , Urocortins/pharmacology
11.
Elife ; 102021 11 17.
Article in English | MEDLINE | ID: mdl-34787076

ABSTRACT

Pulsatile GnRH release is essential for normal reproductive function. Kisspeptin secreting neurons found in the arcuate nucleus, known as KNDy neurons for co-expressing neurokinin B, and dynorphin, drive pulsatile GnRH release. Furthermore, gonadal steroids regulate GnRH pulsatile dynamics across the ovarian cycle by altering KNDy neurons' signalling properties. However, the precise mechanism of regulation remains mostly unknown. To better understand these mechanisms, we start by perturbing the KNDy system at different stages of the estrous cycle using optogenetics. We find that optogenetic stimulation of KNDy neurons stimulates pulsatile GnRH/LH secretion in estrous mice but inhibits it in diestrous mice. These in vivo results in combination with mathematical modelling suggest that the transition between estrus and diestrus is underpinned by well-orchestrated changes in neuropeptide signalling and in the excitability of the KNDy population controlled via glutamate signalling. Guided by model predictions, we show that blocking glutamate signalling in diestrous animals inhibits LH pulses, and that optic stimulation of the KNDy population mitigates this inhibition. In estrous mice, disruption of glutamate signalling inhibits pulses generated via sustained low-frequency optic stimulation of the KNDy population, supporting the idea that the level of network excitability is critical for pulse generation. Our results reconcile previous puzzling findings regarding the estradiol-dependent effect that several neuromodulators have on the GnRH pulse generator dynamics. Therefore, we anticipate our model to be a cornerstone for a more quantitative understanding of the pathways via which gonadal steroids regulate GnRH pulse generator dynamics. Finally, our results could inform useful repurposing of drugs targeting the glutamate system in reproductive therapy.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Diestrus , Estrus , Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/metabolism , Animals , Female , Mice , Mice, Transgenic
12.
Endocrinology ; 162(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34618891

ABSTRACT

Psychosocial stress disrupts reproduction and interferes with pulsatile LH secretion. The posterodorsal medial amygdala (MePD) is an upstream modulator of the reproductive axis and stress. Corticotropin-releasing factor type 2 receptors (CRFR2s) are activated in the presence of psychosocial stress together with increased expression of the CRFR2 ligand Urocortin3 (Ucn3) in the MePD of rodents. We investigate whether Ucn3 signalling in the MePD is involved in mediating the suppressive effect of psychosocial stress on LH pulsatility. First, we administered Ucn3 into the MePD and monitored the effect on LH pulses in ovariectomized mice. Next, we delivered Astressin2B, a selective CRFR2 antagonist, intra-MePD in the presence of predator odor, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Subsequently, we virally infected Ucn3-cre-tdTomato mice with inhibitory designer receptor exclusively activated by designer drugs (DREADDs) targeting MePD Ucn3 neurons while exposing mice to TMT or restraint stress and examined the effect on LH pulsatility as well as corticosterone release. Administration of Ucn3 into the MePD dose-dependently inhibited LH pulses and administration of Astressin2B blocked the suppressive effect of TMT on LH pulsatility. Additionally, DREADDs inhibition of MePD Ucn3 neurons blocked TMT and restraint stress-induced inhibition of LH pulses and corticosterone release. These results demonstrate for the first time that Ucn3 neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator and corticosterone secretion. Ucn3 signalling in the MePD plays a role in modulating the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, and this brain locus may represent a nodal center in the interaction between the reproductive and stress axes.


Subject(s)
Amygdala/metabolism , Luteinizing Hormone/metabolism , Stress, Psychological/metabolism , Urocortins/physiology , Animals , Female , Hypothalamo-Hypophyseal System/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pituitary-Adrenal System/metabolism , Urocortins/genetics
13.
Endocrinology ; 161(5)2020 05 01.
Article in English | MEDLINE | ID: mdl-32181477

ABSTRACT

Progesterone can block estrogen-induced luteinising hormone (LH) surge secretion and can be used clinically to prevent premature LH surges. The blocking effect of progesterone on the LH surge is mediated through its receptor in the anteroventral periventricular nucleus (AVPV) of the hypothalamus. However, the underlying mechanisms are unclear. The preovulatory LH surge induced by estrogen is preceded by a significant reduction in hypothalamic dynorphin and gamma-aminobutyric acid (GABA) release. To test the detailed roles of dynorphin and GABA in an LH surge blockade by progesterone, ovariectomized and 17ß-estradiol capsule-implanted (OVX/E2) mice received simultaneous injections of estradiol benzoate (EB) and progesterone (P) or vehicle for 2 consecutive days. The LH level was monitored from 2:30 pm to 8:30 pm at 30-minute intervals. Progesterone coadministration resulted in the LH surge blockade. A continuous microinfusion of the dynorphin receptor antagonist nor-BNI or GABAA receptor antagonist bicuculline into the AVPV from 3:00 pm to 7:00 pm reversed the progesterone-mediated blockade of the LH surge in 7 of 9 and 6 of 10 mice, respectively. In addition, these LH surges started much earlier than the surge induced by estrogen alone. However, 5 of 7 progesterone-treated mice did not show LH surge secretion after microinfusion with the GABAB receptor antagonist CGP-35348. Additionally, peripheral administration of kisspeptin-54 promotes LH surge-like release in progesterone treated mice. These results demonstrated that the progesterone-mediated suppression of the LH surge is mediated by an increase in dynorphin and GABAA receptor signaling acting though kisspeptin neurons in the AVPV of the hypothalamus in female mice.


Subject(s)
Dynorphins/metabolism , Hypothalamus/drug effects , Luteinizing Hormone/metabolism , Progesterone/pharmacology , Receptors, GABA-A/metabolism , Signal Transduction/drug effects , Animals , Bicuculline/pharmacology , Dynorphins/antagonists & inhibitors , Estradiol/pharmacology , Female , GABA Antagonists/pharmacology , Hypothalamus/cytology , Hypothalamus/metabolism , Hypothalamus, Anterior/cytology , Hypothalamus, Anterior/drug effects , Hypothalamus, Anterior/metabolism , Kisspeptins/metabolism , Mice, Inbred C57BL , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Organophosphorus Compounds/pharmacology , Ovariectomy
14.
J Clin Endocrinol Metab ; 104(4): 1249-1258, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30321365

ABSTRACT

CONTEXT: Maternal obesity increases the risk of preterm delivery. Obesity is known to be associated with altered lipid metabolism. OBJECTIVE: To investigate the associations between high maternal triglyceride (mTG) levels during early pregnancy and risks of preterm delivery stratified by early pregnancy body mass index (BMI). DESIGN: Retrospective cohort study. SETTING: University-based maternity center. PATIENTS: 49,612 women with singleton pregnancy who underwent fasting serum lipid screening during early pregnancy. MAIN OUTCOME MEASURES: Risk of preterm delivery (total, <37 weeks; early, 28 to 33 weeks; and late, 34 to 36 weeks). RESULTS: Among women enrolled, 2494 had a preterm delivery, including 438 early preterm and 2056 late preterm delivery. High mTG (>90th percentile, 2.04 mM) was associated with shortened gestation. Risks of total, early, and late preterm deliveries increased with mTG levels, and the high mTG-related risk was highest for early preterm delivery [adjusted odds ratio (AOR) 1.72; 95% CI, 1.30 to 2.29]. After stratification by BMI, high mTG was associated with risk of preterm delivery in both overweight or obese (OWO) women (AOR 1.32; 95% CI, 1.02 to 1.70) and women with normal BMI (AOR 1.36; 95% CI, 1.16 to 1.59). In additional sensitivity analyses, we found that high mTG was related to higher risks of preterm delivery among OWO women and women with normal BMI (AOR, 1.54; 95% CI, 1.07 to 2.22 and 1.62, 1.34 to 1.96, respectively), especially early preterm delivery (AOR 2.47; 95% CI, 1.19 to 5.10, and AOR 2.50; 95% CI, 1.65 to 3.78, respectively). CONCLUSIONS: High mTG level during early pregnancy increased the risks of preterm delivery not only in OWO women but also in women with normal BMI.


Subject(s)
Obesity/blood , Pregnancy Complications/blood , Pregnancy Trimester, First/blood , Premature Birth/epidemiology , Triglycerides/blood , Adult , Age Factors , Body Mass Index , Female , Humans , Infant, Newborn , Obesity/complications , Odds Ratio , Pregnancy , Premature Birth/etiology , Retrospective Studies , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...