Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(11): e0259552, 2021.
Article in English | MEDLINE | ID: mdl-34735541

ABSTRACT

The choice of revegetating via direct seeding or planting nursery-grown seedlings influences the potential stresses suffered by seedlings such as herbivory and drought. The outcome of the balance between both revegetation methods may ultimately depend on how species identity and traits such as seed and seedling size interact with environmental conditions. To test this, we will conduct a continental-scale experiment consisting of one mini-experiment replicated by multiple participants across Europe. Each participant will establish a site with seeded and planted individuals of one or more native, locally growing oak (Quercus) species; the selection of this genus aims to favour continental-scale participation and to allow testing the response of a widely distributed genus of broad ecological and economic relevance. At each site, participants will follow the present protocol for seed collection, seeding in the field, nursery cultivation, outplanting, protection against herbivores, site maintenance, and measurement of seedling performance and environmental variables. Each measurement on each species at each site will produce one effect size; the data will be analysed through mixed-effects meta-analysis. With this approach we will assess the main effect of revegetation method, species, plant functional traits, and the potential effect of site-specific effect moderators. Overall, we will provide a continental-scale estimate on the seeding vs. planting dilemma and analyse to what extent the differences in environmental conditions across sites, seed size, functional traits, and the phylogenetic relatedness of species can account for the differences in the effect of revegetation method on seedling performance across study sites and species.


Subject(s)
Quercus/physiology , Meta-Analysis as Topic , Seedlings/physiology , Seeds/physiology
2.
Ecol Appl ; 31(6): e02394, 2021 09.
Article in English | MEDLINE | ID: mdl-34164882

ABSTRACT

Seedling planting plays a key role in active forest restoration and regeneration of managed stands. Plant attributes at outplanting can determine tree seedling survival and consequently early success of forest plantations. Although many studies show that large seedlings of the same age within a species have higher survival than small ones, others report the opposite. This may be due to differences in environmental conditions at the planting site and in the inherent functional characteristics of species. Here, we conducted a global-scale meta-analysis to evaluate the effect of seedling size on early outplanting survival. Our meta-analysis covered 86 tree species and 142 planting locations distributed worldwide. We also assessed whether planting site aridity and key plant functional traits related to abiotic and biotic stress resistance and growth capacity, namely specific leaf area and wood density, modulate this effect. Planting large seedlings within a species consistently increases survival in forest plantations worldwide. Species' functional traits modulate the magnitude of the positive seedling size-outplanting survival relationship, showing contrasting effects due to aridity and between angiosperms and gymnosperms. For angiosperms planted in arid/semiarid sites and gymnosperms in subhumid/humid sites the magnitude of the positive effect of seedling size on survival was maximized in species with low specific leaf area and high wood density, characteristics linked to high stress resistance and slow growth. By contrast, high specific leaf area and low wood density maximized the positive effect of seedling size on survival for angiosperms planted in subhumid/humid sites. Results have key implications for implementing forest plantations globally, especially for adjusting nursery cultivation to species' functional characteristics and planting site aridity. Nursery cultivation should promote large seedlings, especially for stress sensitive angiosperms planted in humid sites and for stress-resistant species planted in dry sites.


Subject(s)
Seedlings , Tropical Climate , Forests , Plant Leaves , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...