Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Stem Cell Res Ther ; 14(1): 204, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582765

ABSTRACT

BACKGROUND: Skeletal muscle regeneration is a complex process regulated by many cytokines and growth factors. Among the important signaling pathways regulating the myogenic cell identity are these involving SDF-1 and NOTCH. SDF-1 participates in cell mobilization and acts as an important chemoattractant. NOTCH, on the other hand, controls cell activation and myogenic determination of satellite cells. Knowledge about the interaction between SDF-1 and NOTCH signaling is limited. METHODS: We analyzed two populations of myogenic cells isolated from mouse skeletal muscle, that is, myoblasts derived from satellite cells (SCs) and muscle interstitial progenitor cells (MIPCs). First, microRNA level changes in response to SDF-1 treatment were analyzed with next-generation sequencing (NGS). Second, myogenic cells, i.e., SC-derived myoblasts and MIPCs were transfected with miRNA mimics, selected on the basis of NGS results, or their inhibitors. Transcriptional changes, as well as proliferation, migration, and differentiation abilities of SC-derived myoblasts and MIPCs, were analyzed in vitro. Naive myogenic potential was assessed in vivo, using subcutaneous engrafts and analysis of cell contribution to regeneration of the skeletal muscles. RESULTS: SDF-1 treatment led to down-regulation of miR10a, miR151, miR425, and miR5100 in myoblasts. Interestingly, miR10a, miR425, and miR5100 regulated the expression of factors involved in the NOTCH signaling pathway, including Dll1, Jag2, and NICD. Furthermore, miR10a, miR425, and miR5100 down-regulated the expression of factors involved in cell migration: Acta1, MMP12, and FAK, myogenic differentiation: Pax7, Myf5, Myod, Mef2c, Myog, Musk, and Myh3. However, these changes did not significantly affect myogenic cell migration or fusion either in vitro or in vivo, except when miR425 was overexpressed, or miR5100 inhibitor was used. These two molecules increased the fusion of MIPCs and myoblasts, respectively. Furthermore, miR425-transfected MIPC transplantation into injured skeletal muscle resulted in more efficient regeneration, compared to control cell transplantation. However, skeletal muscles that were injected with miR10a transfected myoblasts regenerated less efficiently. CONCLUSIONS: SDF-1 down-regulates miR10a, miR425, and miR5100, what could affect NOTCH signaling, differentiation of myogenic cells, and their participation in skeletal muscle regeneration.


Subject(s)
Cell Differentiation , Chemokine CXCL12 , MicroRNAs , Muscle, Skeletal , Receptors, Notch , Satellite Cells, Skeletal Muscle , Animals , Mice , Cell Movement , Muscle Development/genetics , Muscle, Skeletal/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Signal Transduction , MicroRNAs/genetics , Receptors, Notch/metabolism , Chemokine CXCL12/metabolism
2.
Cancer Cell Int ; 23(1): 2, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36604669

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. The molecules (proteins, metabolites) secreted by tumors affect their extracellular milieu to support cancer progression. If secreted in amounts detectable in plasma, these molecules can also serve as useful, minimal invasive biomarkers. The knowledge of ccRCC tumor microenvironment is fragmentary. In particular, the links between ccRCC transcriptome and the composition of extracellular milieu are weakly understood. In this study, we hypothesized that ccRCC transcriptome is reprogrammed to support alterations in tumor microenvironment. Therefore, we comprehensively analyzed ccRCC extracellular proteomes and metabolomes as well as transcriptomes of ccRCC cells to find molecules contributing to renal tumor microenvironment. METHODS: Proteomic and metabolomics analysis of conditioned media isolated from normal kidney cells as well as five ccRCC cell lines was performed using mass spectrometry, with the following ELISA validation. Transcriptomic analysis was done using microarray analysis and validated using real-time PCR. Independent transcriptomic and proteomic datasets of ccRCC tumors were used for the analysis of gene and protein expression as well as the level of the immune infiltration. RESULTS: Renal cancer secretome contained 85 proteins detectable in human plasma, consistently altered in all five tested ccRCC cell lines. The top upregulated extracellular proteins included SPARC, STC2, SERPINE1, TGFBI, while downregulated included transferrin and DPP7. The most affected extracellular metabolites were increased 4-hydroxy-proline, succinic acid, cysteine, lactic acid and downregulated glutamine. These changes were associated with altered expression of genes encoding the secreted proteins (SPARC, SERPINE1, STC2, DPP7), membrane transporters (SLC16A4, SLC6A20, ABCA12), and genes involved in protein trafficking and secretion (KIF20A, ANXA3, MIA2, PCSK5, SLC9A3R1, SYTL3, and WNTA7). Analogous expression changes were found in ccRCC tumors. The expression of SPARC predicted the infiltration of ccRCC tumors with endothelial cells. Analysis of the expression of the 85 secretome genes in > 12,000 tumors revealed that SPARC is a PanCancer indicator of cancer-associated fibroblasts' infiltration. CONCLUSIONS: Transcriptomic reprogramming of ccRCC supports the changes in an extracellular milieu which are associated with immune infiltration. The proteins identified in our study represent valuable cancer biomarkers detectable in plasma.

3.
Front Behav Neurosci ; 16: 869526, 2022.
Article in English | MEDLINE | ID: mdl-35874650

ABSTRACT

Background: Vagus nerve is one of the crucial routes in communication between the immune and central nervous systems. The impaired vagal nerve function may intensify peripheral inflammatory processes. This effect subsides along with prolonged recovery after permanent nerve injury. One of the results of such compensation is a normalized plasma concentration of stress hormone corticosterone - a marker of hypothalamic-pituitary-adrenal (HPA) axis activity. In this work, we strive to explain this corticosterone normalization by studying the mechanisms responsible for compensation-related neurochemical alterations in the hypothalamus. Materials and Methods: Using microarrays and high performance liquid chromatography (HPLC), we measured genome-wide gene expression and major amino acid neurotransmitters content in the hypothalamus of bilaterally vagotomized rats, 1 month after surgery. Results: Our results show that, in the long term, vagotomy affects hypothalamic amino acids concentration but not mRNA expression of tested genes. Discussion: We propose an alternative pathway of immune to CNS communication after vagotomy, leading to activation of the HPA axis, by influencing central amino acids and subsequent monoaminergic neurotransmission.

4.
Stem Cell Rev Rep ; 18(6): 2164-2178, 2022 08.
Article in English | MEDLINE | ID: mdl-35190967

ABSTRACT

BACKGROUND: Bone marrow stromal cells (BMSCs) form a perivascular cell population in the bone marrow. These cells do not present naïve myogenic potential. However, their myogenic identity could be induced experimentally in vitro or in vivo. In vivo, after transplantation into injured muscle, BMSCs rarely fused with myofibers. However, BMSC participation in myofiber reconstruction increased if they were modified by NICD or PAX3 overexpression. Nevertheless, BMSCs paracrine function could play a positive role in skeletal muscle regeneration. Previously, we showed that SDF-1 treatment and coculture with myofibers increased BMSC ability to reconstruct myofibers. We also noticed that SDF-1 treatment changed selected miRNAs expression, including miR151 and miR5100. METHODS: Mouse BMSCs were transfected with miR151 and miR5100 mimics and their proliferation, myogenic differentiation, and fusion with myoblasts were analyzed. RESULTS: We showed that miR151 and miR5100 played an important role in the regulation of BMSC proliferation and migration. Moreover, the presence of miR151 and miR5100 transfected BMSCs in co-cultures with human myoblasts increased their fusion. This effect was achieved in an IGFBP2 dependent manner. CONCLUSIONS: Mouse BMSCs did not present naïve myogenic potential but secreted proteins could impact myogenic cell differentiation. miR151 and miR5100 transfection changed BMSC migration and IGFBP2 and MMP12 expression in BMSCs. miR151 and miR5100 transfected BMSCs increased myoblast fusion in vitro.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Bone Marrow Cells , Cell Differentiation/genetics , Humans , Mice , Myoblasts
5.
J Inflamm Res ; 14: 5419-5431, 2021.
Article in English | MEDLINE | ID: mdl-34707383

ABSTRACT

PURPOSE: Perivascular release of inflammatory mediators may accelerate coronary lesion formation and contribute to plaque instability. Accordingly, we compared gene expression in pericoronary adipose tissue (PCAT) in patients with advanced coronary artery disease (CAD) and non-CAD controls. PATIENTS AND METHODS: PCAT samples were collected during coronary bypass grafting from CAD patients (n = 21) and controls undergoing valve replacement surgery, with CAD excluded by coronary angiography (n = 19). Gene expression was measured by GeneChip™ Human Transcriptome Array 2.0. Obtained list of 1348 transcripts (2.0%) that passed the filter criteria was further analyzed by Ingenuity Pathway Analysis software, identifying 735 unique differentially expressed genes (DEGs). RESULTS: Among the CAD patients, 416 (30.9%) transcripts were upregulated, and 932 (69.1%) were downregulated, compared to controls. The top upregulated genes were involved in inflammation and atherosclerosis (chemokines, interleukin-6, selectin E and low-density lipoprotein cholesterol (LDL-C) receptor), whereas the downregulated genes were involved in cardiac ischaemia and remodelling, platelet function and mitochondrial function (miR-3671, miR-4524a, multimerin, biglycan, tissue factor pathway inhibitor (TFPI), glucuronidases, miR-548, collagen type I, III, IV). Among the top upstream regulators, we identified molecules that have proinflammatory and atherosclerotic features (High Mobility Group Box 2 (HMGB2), platelet-derived growth platelet (PDGF) and evolutionarily conserved signaling intermediate in Toll pathways (ESCIT)). The activated pathway related to DEGs consisted of molecules with well-established role in the pathogenesis of atherosclerosis (TFPI, plasminogen activator, plasminogen activator, urokinase receptor (PLAUR), thrombomodulin). Moreover, we showed that 22 of the altered genes form a pro-atherogenic network. CONCLUSION: Altered gene expression in PCAT of CAD patients, with genes upregulation and activation of pathway involved in inflammation and atherosclerosis, may be involved in CAD development and progression.

6.
Plant Commun ; 2(4): 100174, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34327319

ABSTRACT

SWI/SNF chromatin remodelers are evolutionarily conserved multiprotein complexes that use the energy of ATP hydrolysis to change chromatin structure. A characteristic feature of SWI/SNF remodelers is the occurrence in both the catalytic ATPase subunit and some auxiliary subunits, of bromodomains, the protein motifs capable of binding acetylated histones. Here, we report that the Arabidopsis bromodomain-containing proteins BRD1, BRD2, and BRD13 are likely true SWI/SNF subunits that interact with the core SWI/SNF components SWI3C and SWP73B. Loss of function of each single BRD protein caused early flowering but had a negligible effect on other developmental pathways. By contrast, a brd triple mutation (brdx3) led to more pronounced developmental abnormalities, indicating functional redundancy among the BRD proteins. The brdx3 phenotypes, including hypersensitivity to abscisic acid and the gibberellin biosynthesis inhibitor paclobutrazol, resembled those of swi/snf mutants. Furthermore, the BRM protein level and occupancy at the direct target loci SCL3, ABI5, and SVP were reduced in the brdx3 mutant background. Finally, a brdx3 brm-3 quadruple mutant, in which SWI/SNF complexes were devoid of all constituent bromodomains, phenocopied a loss-of-function mutation in BRM. Taken together, our results demonstrate the relevance of BRDs as SWI/SNF subunits and suggest their cooperation with the bromodomain of BRM ATPase.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Chromatin Assembly and Disassembly , DNA-Binding Proteins/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Protein Domains
7.
DNA Repair (Amst) ; 104: 103136, 2021 08.
Article in English | MEDLINE | ID: mdl-34044336

ABSTRACT

Photodynamic therapy (PDT) is a clinically approved cancer therapy of low invasiveness. The therapeutic procedure involves administering a photosensitizing drug (PS), which is then activated with monochromatic light of a specific wavelength. The photochemical reaction produces highly toxic oxygen species. The development of resistance to PDT in some cancer cells is its main limitation. Several mechanisms are known to be involved in the development of cellular defense against cytotoxic effects of PDT, including activation of antioxidant enzymes, drug efflux pumps, degradation of PS, and overexpression of protein chaperons. Another putative factor that plays an important role in the development of resistance of cancer cells to PDT seems to be DNA repair; however, it has not been well studied so far. To explore the role of DNA repair and other potential novel mechanisms associated with the resistance to PDT in the glioblastoma cells, cells stably resistant to PDT were isolated from PDT sensitive cells following repetitive PDT cycles. Duly characterization of isolated PDT-resistant glioblastoma revealed that the resistance to PDT might be a consequence of several mechanisms, including higher repair efficiency of oxidative DNA damage and repair of DNA breaks. Higher activity of APE1 endonuclease and increased expression and activation of DNA damage kinase ATM was demonstrated in the U-87 MGR cell line, suggesting and proving that they are good targets for sensitization of resistant cells to PDT.


Subject(s)
DNA Damage , DNA Repair , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Photochemotherapy , Cell Line, Tumor , Comet Assay , DNA Breaks , DNA, Neoplasm/metabolism , Glioblastoma/genetics , Glioblastoma/physiopathology , Humans , Oxidative Stress
8.
Neurogenetics ; 21(2): 105-119, 2020 04.
Article in English | MEDLINE | ID: mdl-31927669

ABSTRACT

Changes in gene expression profiles were investigated in 23 patients with Niemann-Pick C1 disease (NPC). cDNA expression microarrays with subsequent validation by qRT-PCR were used. Comparison of NPC to control samples revealed upregulation of genes involved in inflammation (MMP3, THBS4), cytokine signalling (MMP3), extracellular matrix degradation (MMP3, CTSK), autophagy and apoptosis (CTSK, GPNMB, PTGIS), immune response (AKR1C3, RCAN2, PTGIS) and processes of neuronal development (RCAN2). Downregulated genes were associated with cytoskeletal signalling (ACTG2, CNN1); inflammation and oxidative stress (CNN1); inhibition of cell proliferation, migration and differentiation; ERK-MAPK pathway (COL4A1, COL4A2, CPA4); cell adhesion (IGFBP7); autophagy and apoptosis (CDH2, IGFBP7, COL4A2); neuronal function and development (CSRP1); and extracellular matrix stability (PLOD2). When comparing NPC and Gaucher patients together versus controls, upregulation of SERPINB2 and IL13RA2 and downregulation of CSRP1 and CNN1 were characteristic. Notably, in NPC patients, the expression of PTGIS is upregulated while the expression of PLOD2 is downregulated when compared to Gaucher patients or controls and potentially could serve to differentiate these patients. Interestingly, in NPC patients with (i) jaundice, splenomegaly and cognitive impairment/psychomotor delay-the expression of ACTG2 was especially downregulated; (ii) ataxia-the expression of ACTG2 and IGFBP5 was especially downregulated; and (iii) VSGP, dysarthria, dysphagia and epilepsy-the expression of AKR1C3 was especially upregulated while the expression of ACTG2 was downregulated. These results indicate disordered apoptosis, autophagy and cytoskeleton remodelling as well as upregulation of immune response and inflammation to play an important role in the pathogenesis of NPC in humans.


Subject(s)
Apoptosis/genetics , Autophagy/genetics , Cytoskeletal Proteins/genetics , Inflammation/genetics , Niemann-Pick Disease, Type C/genetics , Transcriptome , Cell Line , Down-Regulation , Female , Humans , Inflammation/complications , Male , Niemann-Pick Disease, Type C/complications , Signal Transduction
9.
Cancers (Basel) ; 11(12)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31756931

ABSTRACT

Metabolic reprogramming is one of the hallmarks of renal cell cancer (RCC). We hypothesized that altered metabolism of RCC cells results from dysregulation of microRNAs targeting metabolically relevant genes. Combined large-scale transcriptomic and metabolic analysis of RCC patients tissue samples revealed a group of microRNAs that contribute to metabolic reprogramming in RCC. miRNAs expressions correlated with their predicted target genes and with gas chromatography-mass spectrometry (GC-MS) metabolome profiles of RCC tumors. Assays performed in RCC-derived cell lines showed that miR-146a-5p and miR-155-5p targeted genes of PPP (the pentose phosphate pathway) (G6PD and TKT), the TCA (tricarboxylic acid cycle) cycle (SUCLG2), and arginine metabolism (GATM), respectively. miR-106b-5p and miR-122-5p regulated the NFAT5 osmoregulatory transcription factor. Altered expressions of G6PD, TKT, SUCLG2, GATM, miR-106b-5p, miR-155-5p, and miR-342-3p correlated with poor survival of RCC patients. miR-106b-5p, miR-146a-5p, and miR-342-3p stimulated proliferation of RCC cells. The analysis involving >6000 patients revealed that miR-34a-5p, miR-106b-5p, miR-146a-5p, and miR-155-5p are PanCancer metabomiRs possibly involved in global regulation of cancer metabolism. In conclusion, we found that microRNAs upregulated in renal cancer contribute to disturbed expression of key genes involved in the regulation of RCC metabolome. miR-146a-5p and miR-155-5p emerge as a key "metabomiRs" that target genes of crucial metabolic pathways (PPP (the pentose phosphate pathway), TCA cycle, and arginine metabolism).

10.
Stem Cell Res Ther ; 10(1): 343, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31753006

ABSTRACT

BACKGROUND: Satellite cells, a population of unipotent stem cells attached to muscle fibers, determine the excellent regenerative capability of injured skeletal muscles. Myogenic potential is also exhibited by other cell populations, which exist in the skeletal muscles or come from other niches. Mesenchymal stromal/stem cells inhabiting the bone marrow do not spontaneously differentiate into muscle cells, but there is some evidence that they are capable to follow the myogenic program and/or fuse with myoblasts. METHODS: In the present study we analyzed whether IGF-1, IL-4, IL-6, and SDF-1 could impact human and porcine bone marrow-derived mesenchymal stromal/stem cells (hBM-MSCs and pBM-MSCs) and induce expression of myogenic regulatory factors, skeletal muscle-specific structural, and adhesion proteins. Moreover, we investigated whether these factors could induce both types of BM-MSCs to fuse with myoblasts. IGF-1, IL-4, IL-6, and SDF-1 were selected on the basis of their role in embryonic myogenesis as well as skeletal muscle regeneration. RESULTS: We found that hBM-MSCs and pBM-MSCs cultured in vitro in the presence of IGF-1, IL-4, IL-6, or SDF-1 did not upregulate myogenic regulatory factors. Consequently, we confirmed the lack of their naïve myogenic potential. However, we noticed that IL-4 and IL-6 impacted proliferation and IL-4, IL-6, and SDF-1 improved migration of hBM-MSCs. IL-4 treatment resulted in the significant increase in the level of mRNA encoding CD9, NCAM, VCAM, and m-cadherin, i.e., proteins engaged in cell fusion during myotube formation. Additionally, the CD9 expression level was also driven by IGF-1 treatment. Furthermore, the pre-treatment of hBM-MSCs either with IGF-1, IL-4, or SDF-1 and treatment of pBM-MSCs either with IGF-1 or IL-4 increased the efficacy of hybrid myotube formation between these cells and C2C12 myoblasts. CONCLUSIONS: To conclude, our study revealed that treatment with IGF-1, IL-4, IL-6, or SDF-1 affects BM-MSC interaction with myoblasts; however, it does not directly promote myogenic differentiation of these cells.


Subject(s)
Bone Marrow Cells/metabolism , Mesenchymal Stem Cells/metabolism , Muscle Fibers, Skeletal/physiology , Myoblasts/metabolism , Regeneration , Animals , Bone Marrow Cells/cytology , Cell Fusion , Cell Line , Humans , Mesenchymal Stem Cells/cytology , Muscle Fibers, Skeletal/cytology , Myoblasts/cytology , Swine
11.
Stem Cells Int ; 2019: 1613701, 2019.
Article in English | MEDLINE | ID: mdl-31205472

ABSTRACT

BACKGROUND: Cellular therapy is proposed for tendinopathy treatment. Bone marrow- (BM-MSC) and adipose tissue- (ASC) derived mesenchymal stromal cells are candidate populations for such a therapy. The first aim of the study was to compare human BM-MSCs and ASCs for their basal expression of factors associated with tenogenesis as well as chemotaxis. The additional aim was to evaluate if the donor age influences these features. METHODS: Cells were isolated from 24 human donors, 8 for each group: hASC, hBM-MSC Y (age ≤ 45), and hBM-MSC A (age > 45). The microarray analysis was performed on RNA isolated from hASC and hBM-MSC A cells. Based on microarray results, 8 factors were chosen for further evaluation. Two genes were additionally included in the analysis: SCLERAXIS and PPARγ. All these 10 factors were tested for gene expression by the qRT-PCR method, and all except of RUNX2 were additionally evaluated for protein expression or secretion. RESULTS: Microarray analysis showed over 1,400 genes with a significantly different expression between hASC and hBM-MSC groups. Eight of these genes were selected for further analysis: CXCL6, CXCL12, CXCL16, TGF-ß2, SMAD3, COLLAGEN 14A1, MOHAWK, and RUNX2. In the subsequent qRT-PCR analysis, hBM-MSCs showed a significantly higher expression than did hASCs in following genes: CXCL12, CXCL16, TGF-ß2, SMAD3, COLLAGEN 14A1, and SCLERAXIS (p < 0.05, regardless of BM donor age). In the case of CXCL12, the difference between hASC and hBM-MSC was significant only for younger BM donors, whereas for COLLAGEN 14A1-only for elder BM donors. PPARγ displayed a higher expression in hASCs compared to hBM-MSCs. In regard to CXCL6, MOHAWK, and RUNX2 gene expression, no statistically significant differences between groups were observed. CONCLUSIONS: In the context of cell-based therapy for tendinopathies, bone marrow appears to be a more attractive source of MSCs than does adipose tissue. The age of cell donors seems to be less important than cell source, although cells from elder donors show slightly higher basal tenogenic potential than do cells from younger donors.

12.
Sci Rep ; 9(1): 6060, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988500

ABSTRACT

Gaucher disease (GD) is a rare inherited metabolic disease caused by pathogenic variants in the GBA1 gene. So far, the pathomechanism of GD was investigated mainly in animal models. In order to delineate the molecular changes in GD cells we analysed gene expression profile in cultured skin fibroblasts from GD patients, control individuals and, additionally, patients with Niemann-Pick type C disease (NPC). We used expression microarrays with subsequent validation by qRT-PCR method. In the comparison GD patients vs. controls, the most pronounced relative fold change (rFC) in expression was observed for genes IL13RA2 and IFI6 (up-regulated) and ATOH8 and CRISPLD2 (down-regulated). Products of up-regulated and down-regulated genes were both enriched in genes associated with immune response. In addition, products of down-regulated genes were associated with cell-to-cell and cell-to-matrix interactions, matrix remodelling, PI3K-Akt signalling pathway and a neuronal survival pathway. Up-regulation of PLAU, IFIT1, TMEM158 and down-regulation of ATOH8 and ISLR distinguished GD patients from both NPC patients and healthy controls. Our results emphasize the inflammatory character of changes occurring in human GD cells indicating that further studies on novel therapeutics for GD should consider anti-inflammatory agents.


Subject(s)
Fibroblasts/metabolism , Gaucher Disease/immunology , Inflammation/metabolism , Signal Transduction/immunology , Adult , Anti-Inflammatory Agents/therapeutic use , Biomarkers/metabolism , Case-Control Studies , Child , Child, Preschool , Down-Regulation/immunology , Female , Fibroblasts/immunology , Gaucher Disease/diagnosis , Gaucher Disease/drug therapy , Gaucher Disease/metabolism , Gene Expression Profiling , Glucosylceramidase/deficiency , Glucosylceramidase/genetics , Healthy Volunteers , Humans , Infant , Infant, Newborn , Inflammation/drug therapy , Inflammation/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Middle Aged , Mutation , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/immunology , Niemann-Pick Disease, Type C/metabolism , Oligonucleotide Array Sequence Analysis , Skin/cytology , Up-Regulation/immunology
13.
Viruses ; 10(5)2018 05 15.
Article in English | MEDLINE | ID: mdl-29762480

ABSTRACT

Viroids are small non-capsidated non-coding RNA replicons that utilize host factors for efficient propagation and spread through the entire plant. They can incite specific disease symptoms in susceptible plants. To better understand viroid-plant interactions, we employed microarray analysis to observe the changes of gene expression in "Rutgers" tomato leaves in response to the mild (M) and severe (S23) variants of potato spindle tuber viroid (PSTVd). The changes were analyzed over a time course of viroid infection development: (i) the pre-symptomatic stage; (ii) early symptoms; (iii) full spectrum of symptoms and (iv) the so-called 'recovery' stage, when stem regrowth was observed in severely affected plants. Gene expression profiles differed depending on stage of infection and variant. In S23-infected plants, the expression of over 3000 genes was affected, while M-infected plants showed 3-fold fewer differentially expressed genes, only 20% of which were specific to the M variant. The differentially expressed genes included many genes related to stress; defense; hormone metabolism and signaling; photosynthesis and chloroplasts; cell wall; RNA regulation, processing and binding; protein metabolism and modification and others. The expression levels of several genes were confirmed by nCounter analysis.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Diseases/genetics , Solanum lycopersicum/virology , Solanum tuberosum/virology , Viroids/pathogenicity , Gene Ontology , Genes, Plant/genetics , Host-Pathogen Interactions , Oligonucleotide Array Sequence Analysis , Plant Diseases/virology , Plant Leaves/virology , RNA, Viral/analysis , Reproducibility of Results , Time Factors , Viroids/physiology
14.
PLoS One ; 12(6): e0179348, 2017.
Article in English | MEDLINE | ID: mdl-28617847

ABSTRACT

OBJECTIVES: To confirm the association of previously discovered psoriasis (Ps) risk loci with the disease in a Polish population and to create predictive models based on the combination of these single nucleotide polymorphisms (SNPs). MATERIAL AND METHODS: Thirty-eight SNPs were genotyped in 480 Ps patients and 490 controls. Alleles distributions were compared between patients and controls, as well as between different Ps sub-phenotypes. The genetic risk score (GRS) was calculated to assess the cumulative risk conferred by multiple loci. RESULTS: We confirmed associations of several loci with Ps: HLA-C, REL, IL12B, TRIM39/RPP21, POU5F1, MICA. The analysis of ROC curves showed that GRS combining 16 SNPs at least nominally (uncorrected P<0.05) associated with Ps (GRS-N) had significantly better discriminative power than GRS combining SNPs associated with Ps after the Bonferroni correction (AUC 0.776 vs. 0.750, P = 1 x 10-4) or HLA-C (AUC 0.776 vs. 0.694, P<1 x 10-5). On the other hand, adding additional SNPs to the model did not improve its discriminatory ability (AUC 0.782 for GRS combining all SNPs, P>0.05). In order to assess the total risk conferred by GRS-N, we calculated ORs according to GRS-N quartile - the Ps OR for top vs. bottom GRS-N quartiles was 12.29 (P<1 x 10-6). The analysis of different Ps sub-phenotypes showed an association of GRS-N with age of onset and family history of Ps. CONCLUSIONS: We confirmed the association of Ps with several previously identified genetic risk factors in a Polish population. We found that a GRS combining 16 SNPs at least nominally associated with Ps had a significantly better discriminatory ability than HLA-C or GRS combining SNPs associated with Ps after the Bonferroni correction. In contrast, adding additional SNPs to GRS did not increase significantly the discriminative power.


Subject(s)
Genetic Loci , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Psoriasis/genetics , Adolescent , Adult , Child , Female , Humans , Male , Poland/epidemiology , Psoriasis/epidemiology , Risk Factors
15.
Nucleic Acids Res ; 45(6): 3116-3129, 2017 04 07.
Article in English | MEDLINE | ID: mdl-27994035

ABSTRACT

ATP-dependent chromatin remodeling complexes are important regulators of gene expression in Eukaryotes. In plants, SWI/SNF-type complexes have been shown critical for transcriptional control of key developmental processes, growth and stress responses. To gain insight into mechanisms underlying these roles, we performed whole genome mapping of the SWI/SNF catalytic subunit BRM in Arabidopsis thaliana, combined with transcript profiling experiments. Our data show that BRM occupies thousands of sites in Arabidopsis genome, most of which located within or close to genes. Among identified direct BRM transcriptional targets almost equal numbers were up- and downregulated upon BRM depletion, suggesting that BRM can act as both activator and repressor of gene expression. Interestingly, in addition to genes showing canonical pattern of BRM enrichment near transcription start site, many other genes showed a transcription termination site-centred BRM occupancy profile. We found that BRM-bound 3΄ gene regions have promoter-like features, including presence of TATA boxes and high H3K4me3 levels, and possess high antisense transcriptional activity which is subjected to both activation and repression by SWI/SNF complex. Our data suggest that binding to gene terminators and controlling transcription of non-coding RNAs is another way through which SWI/SNF complex regulates expression of its targets.


Subject(s)
Adenosine Triphosphatases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Promoter Regions, Genetic , Terminator Regions, Genetic , 3' Flanking Region , Arabidopsis/metabolism , Binding Sites , RNA, Antisense/biosynthesis , RNA, Messenger/biosynthesis , Transcription, Genetic
16.
Cell Adh Migr ; 11(4): 384-398, 2017 07 04.
Article in English | MEDLINE | ID: mdl-27736296

ABSTRACT

The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous studies we showed that Sdf-1 (stromal derived factor -1) increased migration of stem cells and their fusion with myoblasts in vitro. Importantly, we identified that Sdf-1 caused an increase in the expression of tetraspanin CD9 - adhesion protein involved in myoblasts fusion. In the current study we aimed to uncover the details of molecular mechanism of Sdf-1 action. We focused at the Sdf-1 receptors - Cxcr4 and Cxcr7, as well as signaling pathways induced by these molecules in primary myoblasts, as well as various stem cells - mesenchymal stem cells and embryonic stem cells, i.e. the cells of different migration and myogenic potential. We showed that Sdf-1 altered actin organization via FAK (focal adhesion kinase), Cdc42 (cell division control protein 42), and Rac-1 (Ras-Related C3 Botulinum Toxin Substrate 1). Moreover, we showed that Sdf-1 modified the transcription profile of genes encoding factors engaged in cells adhesion and migration. As the result, cells such as primary myoblasts or embryonic stem cells, became characterized by more effective migration when transplanted into regenerating muscle.


Subject(s)
Cell Movement , Chemokine CXCL12/pharmacology , Embryonic Stem Cells/cytology , Muscle, Skeletal/physiology , Receptors, CXCR4/metabolism , Receptors, CXCR/metabolism , Regeneration , Signal Transduction , Actins/metabolism , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Myoblasts/drug effects , Myoblasts/metabolism , Regeneration/drug effects , Transcription, Genetic/drug effects , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism
17.
Cell Cycle ; 15(21): 2931-2942, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27610933

ABSTRACT

The transcription factor Pax7 plays a key role during embryonic myogenesis and in adult organisms in that it sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Recently we have shown that lack of Pax7 does not prevent the myogenic differentiation of pluripotent stem cells. In the current work we show that the absence of functional Pax7 in differentiating embryonic stem cells modulates cell cycle facilitating their proliferation. Surprisingly, deregulation of Pax7 function also positively impacts at the proliferation of mouse embryonic fibroblasts. Such phenotypes seem to be executed by modulating the expression of positive cell cycle regulators, such as cyclin E.


Subject(s)
Cell Cycle/genetics , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , PAX7 Transcription Factor/metabolism , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Mice , Transcription, Genetic
18.
Plant Cell Environ ; 39(10): 2108-22, 2016 10.
Article in English | MEDLINE | ID: mdl-27083783

ABSTRACT

Studies in yeast and animals have revealed that histone deacetylases (HDACs) often act as components of multiprotein complexes, including chromatin remodelling complexes (CRCs). However, interactions between HDACs and CRCs in plants have yet to be demonstrated. Here, we present evidence for the interaction between Arabidopsis HD2C deacetylase and a BRM-containing SWI/SNF CRC. Moreover, we reveal a novel function of HD2C as a regulator of the heat stress response. HD2C transcript levels were strongly induced in plants subjected to heat treatment, and the expression of selected heat-responsive genes was up-regulated in heat-stressed hd2c mutant, suggesting that HD2C acts to down-regulate heat-activated genes. In keeping with the HDAC activity of HD2C, the altered expression of HD2C-regulated genes coincided in most cases with increased histone acetylation at their loci. Microarray transcriptome analysis of hd2c and brm mutants identified a subset of commonly regulated heat-responsive genes, and the effect of the brm hd2c double mutation on the expression of these genes was non-additive. Moreover, heat-treated 3-week-old hd2c, brm and brm hd2c mutants displayed similar rates of growth retardation. Taken together, our findings suggest that HD2C and BRM act in a common genetic pathway to regulate the Arabidopsis heat stress response.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Gene Expression Regulation, Plant , Histone Deacetylases/physiology , Acetylation , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/physiology , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromatin Assembly and Disassembly , Gene Expression Profiling , Heat-Shock Response , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/physiology
19.
Stem Cells Dev ; 25(4): 285-300, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26649785

ABSTRACT

The transcription factor Pax7 plays a key role during embryonic myogenesis and sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Overexpression of Pax7 has been shown to promote the myogenic differentiation of pluripotent stem cells. However, the effects of the absence of functional Pax7 in differentiating embryonic stem cells (ESCs) have not yet been directly tested. Herein, we studied mouse stem cells that lacked a functional Pax7 gene and characterized the differentiation of these stem cells under conditions that promoted the derivation of myoblasts in vitro. We analyzed the expression of myogenic factors, such as myogenic regulatory factors and muscle-specific microRNAs, in wild-type and mutant cells. Finally, we compared the transcriptome of both types of cells and did not find substantial differences in the expression of genes related to the regulation of myogenesis. As a result, we showed that the absence of functional Pax7 does not prevent the in vitro myogenic differentiation of ESCs.


Subject(s)
Cell Differentiation/genetics , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Muscle Development/genetics , PAX7 Transcription Factor/genetics , Animals , Female , Gene Expression Regulation, Developmental , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , PAX7 Transcription Factor/metabolism
20.
Plant Physiol ; 169(3): 2080-101, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26351307

ABSTRACT

Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass of minor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stress-inducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses of h1.3 null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription. We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants.


Subject(s)
Abscisic Acid/metabolism , Adaptation, Physiological , Arabidopsis/genetics , Gene Expression Regulation, Plant , Histones/genetics , Plant Growth Regulators/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis/radiation effects , Chromatin/genetics , Chromatin/metabolism , DNA Methylation , Droughts , Epigenesis, Genetic , Genes, Reporter , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/metabolism , Light , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...