Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 24(14)2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31319460

ABSTRACT

New types of ionic liquids (ILs) with an epoxy group on a piperidinium-type cation were successfully synthesized by the simple anion exchange reaction of a solid 1-allyl-1-(oxiran-2-ylmethyl)piperidinium bromide, which was designed in this study. Unfortunately, the physicochemical properties, e.g., viscosity and ionic conductivity, of the ILs were inferior to those of common ILs such as 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C4mim][Tf2N]). However, the resulting ILs are of great interest as reaction intermediates: For example, the epoxy group on the cation could react with various reagents, including CO2. Consequently, the modification of the cation structure in the ILs was possible. This is particularly interesting because it is very difficult to modify commonly used ILs. The approach established in this article will provide a favorable synthetic route for creating novel functional ILs in the future.


Subject(s)
Epoxy Compounds/chemistry , Ionic Liquids/chemistry , Piperazines/chemistry , Anions , Cations , Epoxy Compounds/chemical synthesis , Piperazines/chemical synthesis , Viscosity
2.
J Phys Chem B ; 120(35): 9468-76, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27510799

ABSTRACT

Aryltrifluoroborate ([ArBF3](-)) has a designable basic anion structure. Various [ArBF3](-)-based anions were synthesized to create novel alkali metal salts using a simple and safe process. Nearly 40 novel alkali metal salts were successfully obtained, and their physicochemical characteristics, particularly their thermal properties, were elucidated. These salts have lower melting points than those of simple inorganic alkali halide salts, such as KCl and LiCl, because of the weaker interactions between the alkali metal cations and the [ArBF3](-) anions and the anions' larger entropy. Moreover, interestingly, potassium cations were electrochemically reduced in the potassium (meta-ethoxyphenyl)trifluoroborate (K[m-OEtC6H4BF3]) molten salt at 433 K. These findings contribute substantially to furthering molten salt chemistry, ionic liquid chemistry, and electrochemistry.

3.
PLoS One ; 9(3): e91193, 2014.
Article in English | MEDLINE | ID: mdl-24621609

ABSTRACT

Room-temperature ionic liquid (RTIL), which is a liquid salt at or below room temperature, shows peculiar physicochemical properties such as negligible vapor pressure and relatively-high ionic conductivity. In this investigation, we used six types of RTILs as a liquid material in the pretreatment process for scanning electron microscope (SEM) observation of hydrous superabsorbent polymer (SAP) particles. Very clear SEM images of the hydrous SAP particles were obtained if the neat RTILs were used for the pretreatment process. Of them, tri-n-butylmethylphosphonium dimethylphosphate ([P(4, 4, 4, 1)][DMP]) provided the best result. On the other hand, the surface morphology of the hydrous SAP particles pretreated with 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]) was damaged. The results of SEM observation and thermogravimetry analysis of the hydrous SAP pretreated with the RTILs strongly suggested that most water in the SAP particles are replaced with RTIL during the pretreatment process.


Subject(s)
Absorption, Physicochemical , Ionic Liquids/chemistry , Microscopy, Electron, Scanning/methods , Polymers/chemistry , Temperature , Water/chemistry , Vacuum
SELECTION OF CITATIONS
SEARCH DETAIL
...