Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pineal Res ; 76(1): e12934, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38241676

ABSTRACT

Melatonin is a molecule ubiquitous in nature and involved in several physiological functions. In the brain, melatonin is converted to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and then to N1-acetyl-5-methoxykynuramine (AMK), which has been reported to strongly enhance long-term object memory formation. However, the synthesis of AMK in brain tissues and the underlying mechanisms regarding memory formation remain largely unknown. In the present study, young and old individuals from a melatonin-producing strain, C3H/He mice, were employed. The amount of AMK in the pineal gland and plasma was very low compared with those of melatonin at night; conversely, in the hippocampus, the amount of AMK was higher than that of melatonin. Indoleamine 2, 3-dioxygenase (Ido) mRNA was expressed in multiple brain tissues, whereas tryptophan 2,3-dioxygenase (Tdo) mRNA was expressed only in the hippocampus, and its lysate had melatonin to AFMK conversion activity, which was blocked by the TDO inhibitor. The expression levels of phosphorylated cAMP response element binding protein (CREB) and PSD-95 in whole hippocampal tissue were significantly increased with AMK treatment. Before increasing in the whole tissue, CREB phosphorylation was significantly enhanced in the nuclear fraction. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found that downregulated genes in hippocampus of old C3H/He mice were more enriched for long-term potentiation (LTP) pathway. Gene set enrichment analysis showed that LTP and neuroactive receptor interaction gene sets were enriched in hippocampus of old mice. In addition, Ido1 and Tdo mRNA expression was significantly decreased in the hippocampus of old mice compared with young mice, and the decrease in Tdo mRNA was more pronounced than Ido1. Furthermore, there was a higher decrease in AMK levels, which was less than 1/10 that of young mice, than in melatonin levels in the hippocampus of old mice. In conclusion, we first demonstrated the Tdo-related melatonin to AMK metabolism in the hippocampus and suggest a novel mechanism of AMK involved in LTP and memory formation. These results support AMK as a potential therapeutic agent to prevent memory decline.


Subject(s)
Melatonin , Mice , Animals , Melatonin/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Phosphorylation , Mice, Inbred C3H , Kynuramine/metabolism , Aging , Hippocampus/metabolism , RNA, Messenger/metabolism
2.
Neuroreport ; 34(9): 457-462, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37161988

ABSTRACT

We recently demonstrated that a single post-training administration of either melatonin, an MT1/MT2 melatonin receptor agonist ramelteon, or a brain melatonin metabolite N1-acetyl-5-methoxyquinuramine (AMK) enhanced object recognition memory. The present study aims to investigate the effects of melatonin, ramelteon, and AMK on relative phosphorylation levels of memory-related proteins in order to explore candidate signaling pathways associated with the receptor-mediated and nonreceptor-mediated memory-enhancing effects of melatonin. We first confirmed that post-training administration of either melatonin, ramelteon, or AMK at 1 mg/kg promoted long-term memory formation, using the novel object recognition task. Next, the effects of the same doses of these drugs on relative phosphorylation levels of the extracellular signal-regulated kinase (ERK) and calcium/calmodulin-dependent kinases (CaMKs) in the hippocampus and the perirhinal cortex (PRC) were examined by western blot analysis. In the hippocampus, treatment with ramelteon or AMK significantly increased and decreased phosphorylation levels of ERK and cAMP-response element binding protein (CREB) and those of CaMKIIα and ß, respectively. In the PRC, phosphorylation levels of ERK and those of CaMKIIß were significantly increased by both ramelteon and AMK and by ramelteon, respectively. Neither ramelteon nor AMK altered the phosphorylation levels of CaMKIV in either hippocampus or PRC. These results suggest that melatonin may be involved in promoting the formation of long-term object recognition memory in a similar, if not identical, manner by modulating the phosphorylation levels of memory-related proteins such as ERK, CaMKIIs, and CREB in both receptor-mediated and nonreceptor-mediated signaling pathways.


Subject(s)
Melatonin , Perirhinal Cortex , Male , Animals , Mice , Phosphorylation , Melatonin/pharmacology , Extracellular Signal-Regulated MAP Kinases , Hippocampus , Cyclic AMP Response Element-Binding Protein
3.
Neuroreport ; 34(5): 299-307, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36881754

ABSTRACT

OBJECTIVES: Melatonin (MEL) has been reported to enhance cognitive performance. Recently, we have demonstrated that a MEL metabolite N-acetyl-5-methoxykynuramine (AMK) promoted the formation of long-term object recognition memory more potently than MEL. Here, we examined the effects of 1 mg/kg MEL and AMK on both object location memory and spatial working memory. We also investigated the effects of the same dose of these drugs on relative phosphorylation/activation levels of memory-related proteins in the hippocampus (HP), the perirhinal cortex (PRC) and the medial prefrontal cortex (mPFC). METHODS: Object location memory and spatial working memory were assessed using the object location task and the Y-maze spontaneous alternation task, respectively. Relative phosphorylation/activation levels of memory-related proteins were assessed using western blot analysis. RESULTS: AMK, as well as MEL, enhanced object location memory and spatial working memory. AMK increased the phosphorylation of cAMP-response element-binding protein (CREB) in both the HP and the mPFC 2 h after the treatment. AMK also increased the phosphorylation of extracellular signal-regulated kinases (ERKs) but decreased that of Ca2+/calmodulin-dependent protein kinases II (CaMKIIs) in the PRC and the mPFC 30 min after the treatment. MEL increased CREB phosphorylation in the HP 2 h after the treatment, whereas no detectable changes in the other proteins examined were observed. CONCLUSION: These results suggested the possibility that AMK exerts stronger memory-enhancing effects than MEL by more remarkably altering the activation of memory-related proteins such as ERKs, CaMKIIs and CREB in broader brain regions, including the HP, mPFC and PRC, compared to MEL.


Subject(s)
Melatonin , Memory, Short-Term , Phosphorylation , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Extracellular Signal-Regulated MAP Kinases , Memory, Long-Term , Cyclic AMP Response Element-Binding Protein
4.
Horm Behav ; 150: 105329, 2023 04.
Article in English | MEDLINE | ID: mdl-36841054

ABSTRACT

Prevention of dementia is important, because it is a leading cause of disability in elderly people. We previously reported that acute intraperitoneal treatment with N-acetyl-5-methoxy kynuramine (AMK), a melatonin (MEL) metabolite, enhanced long-term object recognition memory in ICR mice, a MEL deficient strain. Despite the presumable availability of AMK for dementia, its effects on cognitive performance have not been elucidated. It is unclear whether endogenous AMK is responsible for modulating long-term memory performance. To address this question, we assessed the effects of endogenous AMK on learning and memory using an object recognition test. C3H mice, a MEL-proficient strain, showed peak MEL levels at zeitgeber times (ZT) 19 and 22. Object recognition memory at ZT20 was superior to that at ZT8. Norharmane (NHM, 100 mg/kg), an indoleamine-2,3-dioxygenase (IDO) inhibitor, prevented the transformation of MEL to AMK, thereby suppressing AMK synthesis at ZT20. NHM (100 mg/kg) and another IDO inhibitor, 1-methyl-L-tryptophan (1-MT, 100 mg/kg), disrupted elevated cognitive performance at ZT20. These data imply that endogenous AMK may play a physiological role in the modulation of cognitive function. We also investigated the effects of pharmacological doses of MEL and AMK on object recognition memory in young C3H mice. MEL administration of 0.1 mg/kg, but not 0.01 mg/kg, enhanced object recognition memory, whereas 0.01 and 1 mg/kg AMK enhanced object recognition memory. Administration of 0.1 and 1 mg/kg AMK also enhanced object recognition memory in old C3H mice. These findings in MEL-proficient mice should be confirmed in other learning and memory tests before encouraging the clinical use of AMK.


Subject(s)
Dementia , Melatonin , Male , Mice , Animals , Kynuramine/metabolism , Kynuramine/pharmacology , Mice, Inbred C3H , Mice, Inbred ICR , Antioxidants/metabolism , Melatonin/metabolism
5.
Neuroreport ; 34(3): 137-143, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36574287

ABSTRACT

Benzodiazepines are widely prescribed for patients suffering from anxiety and insomnia. Although amnesic effects of benzodiazepines are commonly known as side effects, it has also been reported that these drugs improve memory for information learned before drug intake, a phenomenon called retrograde facilitation. However, the retrograde effects of benzodiazepines on cognitive performances in rodents remain controversial. It should be considered that studies on diazepam-induced retrograde facilitation in humans have been conducted using a recall paradigm focused on short-term memory, whereas these studies in rodents have been conducted using memory tasks that mainly target long-term memory and/or require negative or positive reinforcers. In the current study, we investigated whether diazepam, a benzodiazepine, induces retrograde facilitation for object recognition memory and spatial memory in mice, using a novel object recognition test and an object location test, respectively. These tests are available for short-term memory and do not require any reinforcer. The mice treated with diazepam retained object recognition memory for at least 180 min and spatial memory for at least 150 min. In contrast, vehicle-treated control mice retained object recognition memory for 120 min but not 150 min or longer, and spatial memory for 90 min but not 120 min or longer. These data clearly demonstrated diazepam-induced retrograde facilitation for both object recognition and spatial memories in mice. The present study is expected to contribute to the elucidation of the neural basis of retrograde facilitation.


Subject(s)
Diazepam , Recognition, Psychology , Mice , Humans , Male , Animals , Diazepam/pharmacology , Benzodiazepines , Memory, Long-Term , Spatial Memory , Rodentia
6.
J Pineal Res ; 70(1): e12703, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33125735

ABSTRACT

Melatonin (MEL) has been reported to enhance cognitive processes, making it a potential treatment for cognitive decline. However, the role of MEL's metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in these effects are unknown. The current study directly investigated the acute effects of systemic MEL, AFMK, and AMK on novel object recognition. We also analyzed MEL, AFMK, and AMK levels in hippocampus and temporal lobe containing the perirhinal cortex following systemic MEL and AMK treatment. AMK administered post-training had a more potent effect on object memory than MEL and AFMK. AMK was also able to rescue age-associated declines in memory impairments when object memory was tested up to 4 days following training. Results from administering AMK at varying times around the training trial and the metabolism time course in brain tissue suggest that AMK's memory-enhancing effects reflect memory consolidation. Furthermore, inhibiting the MEL-to-AMK metabolic pathway disrupted object memory at 24 hours post-training, suggesting that endogenous AMK might play an important role in long-term memory formation. This is the first study to report that AMK facilitates long-term object memory performance in mice, and that MEL crosses the blood-brain barrier and is immediately converted to AMK in brain tissue. Overall, these results support AMK as a potential therapeutic agent to improve or prevent memory decline.


Subject(s)
Behavior, Animal/drug effects , Hippocampus/drug effects , Kynuramine/analogs & derivatives , Melatonin/pharmacology , Memory, Long-Term/drug effects , Temporal Lobe/drug effects , Age Factors , Animals , Biotransformation , Hippocampus/metabolism , Kynuramine/metabolism , Kynuramine/pharmacology , Male , Melatonin/deficiency , Melatonin/genetics , Mice, Inbred ICR , Open Field Test , Temporal Lobe/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...