Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Water Res ; 36(20): 5029-36, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12448551

ABSTRACT

Sorption kinetics of heavy oil into porous carbons was evaluated by a concept of liquid sorption coefficient obtained from the weight increase of heavy oil with sorption time, which was measured by a wicking test. Exfoliated graphite, carbonized fir fibers and carbon fiber felts were used as porous materials. It was found that the liquid sorption coefficient of fibrous carbons was twice larger than that of exfoliated graphite. Such a difference in the liquid sorption coefficient between the exfoliated graphite and two fibrous carbons was caused by a difference in effective sorption porosity and tortuosity between them. For the exfoliated graphite and carbonized fir fibers, the liquid sorption coefficient and the effective sorption porosity were strongly dependent on their density. The maximum values of both liquid sorption coefficient and effective sorption porosity of the exfoliated graphite were shown at the bulk density around 16 kg/m3. The liquid sorption coefficient of the carbonized fir fibers increased with increasing the density in the range from 6 to 30 kg/m3. When the carbonized fir fibers were densified above 30 kg/m3, the sorption rate was saturated. On the other hand, the sorption kinetics into the carbon fiber felt was almost independent of the bulk density, because the density of the carbon fiber felt is not effective for the pore structure. The effect of bulk density on the sorption kinetics could be supported from an analysis of pore structure of the porous carbons with different densities, which was measured by mercury porosimeter.


Subject(s)
Carbon/chemistry , Petroleum , Adsorption , Environmental Pollution/prevention & control , Kinetics , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...