Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biol Reprod ; 110(1): 90-101, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37774351

ABSTRACT

Mammalian ovulation is induced by a luteinizing hormone surge, which is triggered by elevated plasma estrogen levels; however, chronic exposure to high levels of estradiol is known to inhibit luteinizing hormone secretion. In the present study, we hypothesized that the inhibition of the luteinizing hormone surge by chronic estradiol exposure is due to the downregulation of the estrogen receptor alpha in kisspeptin neurons at hypothalamic anteroventral periventricular nucleus, which is known as the gonadotropin-releasing hormone/luteinizing hormone surge generator. Animals exposed to estradiol for 2 days showed an luteinizing hormone surge, whereas those exposed for 14 days showed a significant suppression of luteinizing hormone. Chronic estradiol exposure did not affect the number of kisspeptin neurons and the percentage of kisspeptin neurons with estrogen receptor alpha or c-Fos in anteroventral periventricular nucleus, but it did affect the number of kisspeptin neurons in arcuate nucleus. Furthermore, chronic estradiol exposure did not affect gonadotropin-releasing hormone neurons. In the pituitary, 14-day estradiol exposure significantly reduced the expression of Lhb mRNA and LHß-immunoreactive areas. Gonadotropin-releasing hormone-induced luteinizing hormone release was also reduced significantly by 14-day estradiol exposure. We revealed that the suppression of an luteinizing hormone surge by chronic estradiol exposure was induced in association with the significant reduction in kisspeptin neurons in arcuate nucleus, luteinizing hormone expression in the pituitary, and pituitary responsiveness to gonadotropin-releasing hormone, and this was not caused by changes in the estrogen receptor alpha-expressing kisspeptin neurons in anteroventral periventricular nucleus and gonadotropin-releasing hormone neurons, which are responsible for estradiol positive feedback.


Subject(s)
Estradiol , Luteinizing Hormone , Female , Animals , Luteinizing Hormone/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus, Anterior/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Neurons/metabolism , Mammals/metabolism
2.
Biol Sex Differ ; 14(1): 89, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38111056

ABSTRACT

BACKGROUND: ESR2, a nuclear estrogen receptor also known as estrogen receptor ß, is expressed in the brain and contributes to the actions of estrogen in various physiological phenomena. However, its expression profiles in the brain have long been debated because of difficulties in detecting ESR2-expressing cells. In the present study, we aimed to determine the distribution of ESR2 in rodent brains, as well as its sex and interspecies differences, using immunohistochemical detection with a well-validated anti-ESR2 antibody (PPZ0506). METHODS: To determine the expression profiles of ESR2 protein in rodent brains, whole brain sections from mice and rats of both sexes were subjected to immunostaining for ESR2. In addition, to evaluate the effects of circulating estrogen on ESR2 expression profiles, ovariectomized female mice and rats were treated with low or high doses of estrogen, and the resulting numbers of ESR2-immunopositive cells were analyzed. Welch's t-test was used for comparisons between two groups for sex differences, and one-way analysis of variance followed by the Tukey-Kramer test were used for comparisons among multiple groups with different estrogen treatments. RESULTS: ESR2-immunopositive cells were observed in several subregions of mouse and rat brains, including the preoptic area, extended amygdala, hypothalamus, mesencephalon, and cerebral cortex. Their distribution profiles exhibited sex and interspecies differences. In addition, low-dose estrogen treatment in ovariectomized female mice and rats tended to increase the numbers of ESR2-immunopositive cells, whereas high-dose estrogen treatment tended to decrease these numbers. CONCLUSIONS: Immunohistochemistry using the well-validated PPZ0506 antibody revealed a more localized expression of ESR2 protein in rodent brains than has previously been reported. Furthermore, there were marked sex and interspecies differences in its distribution. Our histological analyses also revealed estrogen-dependent changes in ESR2 expression levels in female brains. These findings will be helpful for understanding the ESR2-mediated actions of estrogen in the brain.


Although the brain is a major target organ of estrogens, the distribution of estrogen receptors in the brain is not fully understood. ESR2, also known as estrogen receptor ß, is an estrogen receptor subtype; its localization in the brain has long been controversial because it has traditionally been difficult to detect. In the present study, we analyzed the expression sites of ESR2 in mouse and rat brains using immunohistochemistry with a well-validated antibody, PPZ0506. The immunohistochemical analysis revealed a more localized expression of ESR2 protein in brain subregions than has previously been reported. Additionally, there were clear sex and interspecies differences in the distribution of this protein. We also observed changes in ESR2 expression in the female brain in response to circulating estrogen levels. Our results, which show the precise expression profiles of ESR2 protein in rodent brains, will be helpful for understanding the ESR2-mediated actions of estrogen.


Subject(s)
Brain , Estrogen Receptor beta , Receptors, Estrogen , Animals , Female , Male , Rats , Brain/metabolism , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Hypothalamus/metabolism , Receptors, Estrogen/metabolism
3.
Peptides ; 168: 171064, 2023 10.
Article in English | MEDLINE | ID: mdl-37507090

ABSTRACT

Neuropeptide B (NPB) has been identified as an endogenous peptide ligand for the orphan receptor NPBWR1. However, the effect of NPB on the central regulatory mechanisms of reproductive functions remains unclear. Our findings indicated the presence of Npb, Npw (which is another ligand for NPBWR1), and Npbwr1 mRNA in the hypothalamus of male and female rats at each stage of the estrous cycle. Npb mRNA expression was found to be significantly higher in diestrus compared to estrus. The expression of Npw mRNA was one order of magnitude lower than that of Npb mRNA, and Npw mRNA expression in diestrus was significantly higher than that in the other stages of the estrous cycle. Furthermore, Npbwr1 mRNA expression was found to be significantly higher in diestrus compared to the other stages of the estrous cycle and intact males. Notably, estrogen did not alter the expression of Npb, Npw, and Npbwr1 mRNAs in the hypothalamus of females. Central injection of NPB increased plasma luteinizing hormone (LH) levels in both intact males and estrogen-primed ovariectomized females but not in ovariectomized females. These results suggest that NPB-NPBWR1 signaling would be a facilitatory regulatory mechanism in the reproductive function of male and female rats. To the best of our knowledge, this study is the first report to describe the central role of NPB-NPBWR1 signaling in LH regulation in mammals.


Subject(s)
Luteinizing Hormone , Receptors, Neuropeptide , Rats , Animals , Female , Male , Receptors, Neuropeptide/metabolism , Ligands , RNA, Messenger/genetics , RNA, Messenger/metabolism , Estrogens , Mammals/genetics
4.
Endocr Connect ; 12(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36408965

ABSTRACT

The nutritional environment during development periods induces metabolic programming, leading to metabolic disorders and detrimental influences on human reproductive health. This study aimed to determine the long-term adverse effect of intrauterine malnutrition on the reproductive center kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus (ARC) of female offspring. Twelve pregnant rats were divided into ad-lib-fed (control, n = 6) and 50% undernutrition (UN, n = 6) groups. The UN group was restricted to 50% daily food intake of the control dams from gestation day 9 until term delivery. Differences between the two groups in terms of various maternal parameters, including body weight (BW), pregnancy duration, and litter size, as well as birth weight, puberty onset, estrous cyclicity, pulsatile luteinizing hormone (LH) secretion, and hypothalamic gene expression of offspring, were determined. Female offspring of UN dams exhibited low BW from birth to 3 weeks, whereas UN offspring showed signs of precocious puberty; hypothalamic Tac3 (a neurokinin B gene) expression was increased in prepubertal UN offspring, and the BW at the virginal opening was lower in UN offspring than that in the control group. Interestingly, the UN offspring showed significant decreases in the number of KNDy gene-expressing cells after 29 weeks of age, but the number of ARC kisspeptin-immunoreactive cells, pulsatile LH secretions, and estrous cyclicity were comparable between the groups. In conclusion, intrauterine undernutrition induced various changes in KNDy gene expression depending on the life stage. Thus, intrauterine undernutrition affected hypothalamic developmental programming in female rats.

5.
Peptides ; 160: 170929, 2023 02.
Article in English | MEDLINE | ID: mdl-36574861

ABSTRACT

Kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the arcuate nucleus (ARC) regulate pulsatile luteinizing hormone (LH) secretion. These neurons express estrogen receptors and are negatively regulated by estrogen. This study aimed to determine whether estrogen supplementation after short-term ovariectomy-induced estrogen depletion has different effects on KNDy neurons depending on the timing of the supplementation. To decrease endogenous estradiol (E2) for a short time, adult female rats received a tube filled with E2 one week after ovariectomy and utilized it one week later (O1w + E). From the results of immunohistochemistry, the response to E2 was attenuated in KNDy neurons of O1w + E rats. Enlarged LH-secreting cells in the anterior pituitary were found in O1w + E rats; however, such enlarged LH cells were not found in ones without previous short-term E2 depletion. From the analysis of LH pulses, plasma LH levels were increased in O1w + E rats relative to ones without previous short-term E2 depletion. These results suggested that once endogenous sex steroids were depleted, the response to E2 in hypothalamic KNDy neurons did not fully recover in one week. Thus, short-term sex steroid depletion due to gonadectomy could alter the response to the sex steroids in KNDy neurons even though the period without sex steroids is only one week, and the alteration is likely to affect plasma hormone levels.


Subject(s)
Gonadotrophs , Neurokinin B , Rats , Female , Animals , Neurokinin B/metabolism , Dynorphins/metabolism , Gonadotrophs/metabolism , Kisspeptins/metabolism , Luteinizing Hormone , Estrogens , Arcuate Nucleus of Hypothalamus , Neurons/metabolism , Gonadotropin-Releasing Hormone
6.
J Endocrinol ; 253(1): 39-51, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35084363

ABSTRACT

Kisspeptin neurons, i.e. KNDy neurons, in the arcuate nucleus (ARC) coexpress neurokinin B and dynorphin and regulate gonadotropin-releasing hormone/luteinizing hormone (LH) pulses. Because it remains unclear whether these neurons are associated with reproductive dysfunction in diabetic females, we examined the expression of KNDy neurons detected by histochemistry in streptozotocin (STZ)-induced diabetic female rats 8 weeks after STZ injection. We also evaluated relevant metabolic parameters - glucose, 3-hydroxybutyrate, and non-esterified fatty acids - as indicators of diabetes progression. Severe diabetes with hyperglycemia and severe ketosis suppressed the mRNA expression of KNDy neurons, resulting in low plasma LH levels and persistent diestrus. In moderate diabetes with hyperglycemia and moderate ketosis, kisspeptin-immunoreactive cells and plasma LH levels were decreased, while the mRNA expression of KNDy neurons remained unchanged. Mild diabetes with hyperglycemia and slight ketosis did not affect KNDy neurons and plasma LH levels. The number of KNDy cells was strongly and negatively correlated with plasma 3-hydroxybutyrate levels. The vaginal smear analysis showed unclear proestrus in diabetic rats 3-5 days after STZ injection, and the mRNA expression of kisspeptin in the ARC was decreased 2 weeks after STZ injection in severely diabetic rats. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV), which induce an LH surge, were unaffected at 2 and 8 weeks after STZ injection regardless of the diabetes severity. These results suggest that diabetes mellitus progression in females may negatively affect ARC kisspeptin neurons but not AVPV kisspeptin neurons, implicating a potential role of ARC kisspeptin neurons in menstrual disorder and infertility.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Female , Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Neurokinin B/genetics , Neurons/metabolism , Rats
7.
Peptides ; 142: 170546, 2021 08.
Article in English | MEDLINE | ID: mdl-33794282

ABSTRACT

Metabolic stress resulting from either lack or excess of nutrients often causes infertility in both sexes. Kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the arcuate nucleus (ARC) has been suggested to be a key players in reproduction via direct stimulation of the pulsatile gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release in mammalian species. In this study, we investigated the effect of high-fat diet (HFD) on hypothalamic KNDy gene expression to examine the pathogenic mechanism underlying obesity-induced infertility in male and female rats. Male and female rats at 7 weeks of age were fed with either a standard or HFD for 4 months. In the male rats, the HFD caused a significant suppression of ARC Kiss1 and Pdyn gene expressions, but did not affect the plasma luteinizing hormone (LH) levels and sizes of the morphology of the testis and epididymis. In the female rats, 58% of the HFD-fed female rats exhibited irregular estrous cycles, whereas the remaining rats showed regular cycles. Two of the 10 rats that showed HFD-induced irregular estrous cycles showed profound suppression of LH pulse frequency and the number of ARC Kiss1-expressing cells, whereas the other females showed normal LH pulses and ARC Kiss1 expression. Our finding shows that suppression of ARC Kiss1 expression might be the initial pathological change of hypogonadotropic hypogonadism in HFD-fed male rats, while the obese-related infertility in the female rats may be mainly induced by KNDy-independent pathways. Taken together, ARC kisspeptin neurons in male rats may be susceptible to HFD-induced obesity compared with those in female rats.


Subject(s)
Arcuate Nucleus of Hypothalamus/pathology , Gonadal Steroid Hormones/pharmacology , Hypogonadism/pathology , Luteinizing Hormone/metabolism , Metabolic Diseases/complications , Neurons/pathology , Obesity/complications , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Diet, High-Fat , Dynorphins/genetics , Dynorphins/metabolism , Female , Hypogonadism/etiology , Hypogonadism/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Male , Neurokinin B/genetics , Neurokinin B/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Wistar
8.
Acta Histochem Cytochem ; 52(5): 85-91, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31777408

ABSTRACT

Hypothalamic kisspeptin neurons stimulate gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) release. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) of rats induce an LH surge for ovulation, and those in the arcuate nucleus (ARC) regulate pulsatile LH secretion for follicle development and spermatogenesis. Dysfunction of kisspeptin neurons thus reduces the reproductive function. This review focuses on the effect of androgen or aging on kisspeptin expression in rats. Although androgen directly suppresses ARC kisspeptin neurons in female rats, the AVPV kisspeptin neurons are hardly affected. In rats, plasma LH concentrations decrease in both sexes with aging, and ARC kisspeptin expression also decreases in old rats compared with young rats. In addition, kisspeptin neurons may be associated with hyperprolactinemia in old female rats because they are known to release prolactin through hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons. Hypothalamic kisspeptin neurons are thus the main regulator to secrete LH, and inhibition of kisspeptin expression leads to various kinds of reproductive dysfunction.

9.
Histochem Cell Biol ; 152(1): 25-34, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30671658

ABSTRACT

Kisspeptin acts as a potent neuropeptide regulator of reproduction through modulation of the hypothalamic-pituitary-gonadal axis. Previous studies revealed sex differences in brain expression patterns as well as regulation of expression by estrogen. Alternatively, sex differences and estrogen regulation of the kisspeptin receptor (encoded by Kiss1r) have not been examined at cellular resolution. In the current study, we examined whether Kiss1r mRNA expression also exhibits estrogen sensitivity and sex-dependent differences using in situ hybridization. We compared Kiss1r mRNA expression between ovariectomized (OVX) rats and estradiol (E2)-replenished OVX rats to examine estrogen sensitivity, and compared expression between gonadally intact male rats and female rats in diestrus or proestrus to examine sex differences. In OVX rats, E2 replenishment significantly reduced Kiss1r expression specifically in the hypothalamic arcuate nucleus (ARC). A difference in Kiss1r expression was also observed between diestrus and proestrus rats in the hypothalamic paraventricular nucleus (PVN), but not in the ARC. Thus, estrogen appears to have region- and context-specific effects on Kiss1r expression. However, immunostaining revealed minimal colocalization of estrogen receptor alpha (ERα) in Kiss1r-expressing neuronal populations of ARC and PVN, indicating indirect or ERα-independent regulation of Kiss1r expression. Surprisingly, unlike the kisspeptin ligand, no sexual dimorphisms were observed in either the brain distribution of Kiss1r expression or in the number of Kiss1r-expressing neurons within enriched brain nuclei. The current study reveals marked differences in regulation between kisspeptin and kisspeptin receptor, and provides an essential foundation for further study of kisspeptin signaling and function in reproduction.


Subject(s)
Brain/metabolism , Estrogens/deficiency , Estrous Cycle/metabolism , Receptors, Kisspeptin-1/analysis , Receptors, Kisspeptin-1/metabolism , Animals , Female , Gene Expression Profiling , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Kisspeptin-1/genetics
10.
Neurosci Lett ; 665: 135-139, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29203206

ABSTRACT

Zucker fatty (ZF) rats are considered to be an obese model due to leptin receptor abnormality and such rats show infertility. Pulsatile gonadotropin-releasing hormone/luteinizing hormone (LH) secretion, which is important for follicular development in females, is considered to be controlled by KNDy neurons coexpressing kisspeptin, neurokinin B (NKB), and dynorphin A (DynA), encoded by Kiss1, Tac3, and Pdyn, respectively, in the hypothalamic arcuate nucleus (ARC). The purpose of this study is to examine the expression of KNDy neurons in female ZF rats by histochemical approach because pulsatile LH secretion is suppressed. Zucker lean (ZL) rats served as a control group. Animals were ovariectomized and subcutaneously implanted with a silicon tube containing estradiol to produce plasma level of estradiol during diestrus. Plasma LH levels decreased in ZF rats compared with ZL rats. The expressions of each mRNA (Kiss1, Tac3, and Pdyn) and each peptide (kisspeptin, NKB, and DynA) in the ARC significantly decreased in ZF rats compared with ZL rats. However, the number of Kiss1 neurons in the anterior ventral periventricular nucleus did not significantly differ between the two groups. These results suggest that dysfunction of leptin signaling negatively affects KNDy neurons in the ARC, resulting in reproductive dysfunction caused by suppression of the LH pulse.


Subject(s)
Dynorphins/metabolism , Hypothalamus/metabolism , Kisspeptins/metabolism , Neurokinin B/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Gonadotropin-Releasing Hormone/metabolism , Neurons/metabolism , Rats , Rats, Zucker
11.
Biol Reprod ; 97(5): 709-718, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29069289

ABSTRACT

Kisspeptin (KISS1; encoded by Kiss1) neurons in the arcuate nucleus (ARC) coexpress tachykinin 3 (TAC3; also known as neurokinin B) and dynorphin A (PDYN). Accordingly, they are termed KNDy neurons and considered to be crucial in generating pulsatile release of gonadotropin-releasing hormone. Accumulating evidence suggests that Kiss1 and Tac3 are negatively regulated by estrogen. However, it has not been fully determined whether and how estrogen modulates Pdyn and PDYN. Here, we examined the expression of Pdyn mRNA and PDYN by in situ hybridization and immunohistochemistry, respectively, in the ARC of female rats after ovariectomy (OVX) and OVX plus low- or high-dose beta-estradiol (E2) replacement. We also investigated the effect of E2 on expression of Kiss1, KISS1, Tac3, and TAC3. Furthermore, colocalization of PDYN and estrogen receptor alpha (ESR1) was determined. Subsequently, we found that low-dose E2 treatment had no effect on Pdyn mRNA-expressing cells, but increased PDYN-immunoreactive (ir) cell numbers. In contrast, high-dose E2 treatment resulted in prominent reductions in both Pdyn mRNA-expressing and PDYN-ir cell numbers. Changes induced by low or high doses of E2 were similarly observed in the expression of Kiss1, KISS1, Tac3, and TAC3. The majority of PDYN-ir neurons coexpressed ESR1 in all groups. Our results indicate that E2 regulates the expression of PDYN, as well as KISS1 and TAC3, with regulation by E2 differing according to its levels.


Subject(s)
Arcuate Nucleus of Hypothalamus/cytology , Dynorphins/metabolism , Estradiol/pharmacology , Neurons/metabolism , Animals , Dynorphins/genetics , Estradiol/administration & dosage , Female , Gene Expression Regulation/drug effects , Immunohistochemistry , In Situ Hybridization , Kisspeptins/genetics , Kisspeptins/metabolism , Neurokinin B/genetics , Neurokinin B/metabolism , Neurons/drug effects , Ovariectomy , RNA, Messenger/metabolism , Rats
12.
J Endocrinol ; 233(3): 281-292, 2017 06.
Article in English | MEDLINE | ID: mdl-28377404

ABSTRACT

Hyperandrogenic women have various grades of ovulatory dysfunction, which lead to infertility. The purpose of this study was to determine whether chronic exposure to androgen affects the expression of kisspeptin (ovulation and follicle development regulator) or release of luteinizing hormone (LH) in female rats. Weaned females were subcutaneously implanted with 90-day continuous-release pellets of 5α-dihydrotestosterone (DHT) and studied after 10 weeks of age. Number of Kiss1-expressing cells in both the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) was significantly decreased in ovary-intact DHT rats. Further, an estradiol-induced LH surge was not detected in DHT rats, even though significant differences were not observed between DHT and non-DHT rats with regard to number of AVPV Kiss1-expressing cells or gonadotrophin-releasing hormone (GnRH)-immunoreactive (ir) cells in the presence of high estradiol. Kiss1-expressing and neurokinin B-ir cells were significantly decreased in the ARC of ovariectomized (OVX) DHT rats compared with OVX non-DHT rats; pulsatile LH secretion was also suppressed in these animals. Central injection of kisspeptin-10 or intravenous injection of a GnRH agonist did not affect the LH release in DHT rats. Notably, ARC Kiss1-expressing cells expressed androgen receptors (ARs) in female rats, whereas only a few Kiss1-expressing cells expressed ARs in the AVPV. Collectively, our results suggest excessive androgen suppresses LH surge and pulsatile LH secretion by inhibiting kisspeptin expression in the ARC and disruption at the pituitary level, whereas AVPV kisspeptin neurons appear to be directly unaffected by androgen. Hence, hyperandrogenemia may adversely affect ARC kisspeptin neurons, resulting in anovulation and menstrual irregularities.


Subject(s)
Dihydrotestosterone/pharmacology , Gene Expression Regulation/drug effects , Kisspeptins/metabolism , Luteinizing Hormone/metabolism , Animals , Arcuate Nucleus of Hypothalamus/physiology , Dihydrotestosterone/administration & dosage , Drug Administration Schedule , Female , Genes, fos/physiology , Hypothalamus, Anterior/physiology , Immunohistochemistry , Kisspeptins/genetics , Luteinizing Hormone/genetics , Neurokinin B/metabolism , RNA, Messenger , Rats , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
13.
Neurobiol Aging ; 50: 30-38, 2017 02.
Article in English | MEDLINE | ID: mdl-27842268

ABSTRACT

Pulsatile secretion of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) decreases during aging. Kisspeptin (encoded by Kiss1) neurons in the arcuate nucleus coexpress neurokinin B (Tac3) and dynorphin (Pdyn) and are critical for regulating the GnRH/LH pulse. We therefore examined kisspeptin neurons by histochemistry and pulsatile LH release in rats aged 2-3 (Young), 12-13 (Young-Middle), 19-22 (Late-Middle), and 24-26 (Old) months. Total LH concentrations, sampled for 3 hours, decreased in both sexes with aging. In females, numbers of Tac3 and Pdyn neurons were significantly reduced in all aging rats, and numbers of Kiss1 neurons were significantly reduced in Late-Middle and Old rats. In males, numbers of all 3 neuron-types were significantly decreased in all aging rats. GnRH agonist induced LH release in all animals; however, the increased LH concentration in all aging rats was less than that in Young rats. These results suggest that expression of each gene in kisspeptin neurons may be controlled individually during aging, and that reduction of their expression or change in pituitary responsiveness may cause attenuated pulsatile LH secretion.


Subject(s)
Aging/pathology , Aging/physiology , Dynorphins/metabolism , Hypothalamus/metabolism , Kisspeptins/metabolism , Luteinizing Hormone/metabolism , Neurokinin B/metabolism , Neurons/metabolism , Neurons/pathology , Animals , Dynorphins/physiology , Female , Histocytochemistry , Hypothalamus/cytology , Hypothalamus/pathology , Kisspeptins/physiology , Male , Menopause/metabolism , Menopause/physiology , Neurokinin B/physiology , Neurons/physiology , Pulsatile Flow , Rats, Wistar
14.
Neurosci Lett ; 612: 161-166, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26679227

ABSTRACT

KNDy neurons are named for their co-expression of three neuropeptides, kisspeptin, neurokinin B (NKB) and dynorphin A (DynA). These cells, located in the hypothalamic arcuate nucleus (ARC), are associated with generation of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) pulses to control follicular growth and steroidogenesis. However, subcellular sorting mechanisms for secretory vesicles containing these neuropeptides have not been elucidated. In this study, we analyzed the localization pattern of kisspeptin, NKB and DynA in the ARC of the ovariectomized rat immediately treated with estrogen using immunoelectron microscopy. First, we identified neuropeptides by dual-labeled fluorescence immunohistochemistry, with results indicating all three neuropeptides co-express within individual ARC cells in female rats. Next, we investigated the subcellular localization pattern of kisspeptin, NKB, and/or DynA using post-embedding double immunoelectron microscopy, indicating that each type of neuropeptide is contained within separate and individual neurosecretory vesicles. This suggests sorting and packaging of kisspeptin, NKB and DynA is differentially regulated within KNDy neurons. Our findings facilitate understanding of regulatory mechanisms underlying kisspeptin secretion in KNDy neurons, and generation of GnRH/LH pulses induced by kisspeptin in the ARC.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Dynorphins/metabolism , Kisspeptins/metabolism , Neurokinin B/metabolism , Neurons/metabolism , Animals , Female , Microscopy, Immunoelectron , Rats, Wistar
15.
Acta Histochem Cytochem ; 49(6): 191-196, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-28127107

ABSTRACT

Kisspeptin neurons in the arcuate nucleus (ARC) regulate prolactin secretion, and are in physical contact with tuberoinfundibular dopaminergic (TIDA) neurons, which inhibit prolactin secretion. Prolactin levels in the blood are increased with advancing age in rats; therefore, we investigated the interactions with TIDA neurons and kisspeptin neurons in aged female rats (24 months of age), relative to those of young adult female rats (9-10 weeks of age). Plasma prolactin levels in the aged rats were significantly higher than those of young adult rats. Tyrosine hydroxylase (TH)-immunoreactive (ir) cell bodies and kisspeptin-ir nerve fibers were found in the dorsomedial ARC of both groups. The number of TH-ir cell bodies in the dorsomedial ARC did not differ significantly between groups. Additionally, no significant differences in the number of TH-ir cells in contact with kisspeptin-ir fibers was observed between groups. However, the number of kisspeptin-ir or Kiss1 mRNA-expressing cells in the ARC was significantly reduced in the aged rats compared with that of the young rats. These results suggest that the contacts between TIDA neurons and kisspeptin neurons are maintained after reproductive senescence, while production of kisspeptin in the ARC decreases significantly during aging.

16.
Neurosci Lett ; 594: 127-32, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25827489

ABSTRACT

Disorders caused by the malfunction of the serotonergic system in the central nervous system show sex-specific prevalence. Many studies have reported a relationship between sex steroid hormones and the brain serotonergic system; however, the interaction between sex steroid hormones and the number of brain neurons expressing serotonin has not yet been elucidated. In the present study, we determined whether sex steroid hormones altered the number of serotonergic neurons in the dorsal raphe nucleus (DR) of adult rat brains. Animals were divided into five groups: ovariectomized (OVX), OVX+low estradiol (E2), OVX+high E2, castrated males, and intact males. Antibodies against 5-hydroxytryptamine (5-HT, serotonin) and tryptophan hydroxylase (Tph), an enzyme for 5-HT synthesis, were used as markers of 5-HT neurons, and the number of 5-HT-immunoreactive (ir) or Tph-ir cells was counted. We detected no significant differences in the number of 5-HT-ir or Tph-ir cells in the DR among the five groups. By contrast, the intensity of 5-HT-ir showed significant sex differences in specific subregions of the DR independent of sex steroid levels, suggesting that the manipulation of sex steroid hormones after maturation does not affect the number and intensive immunostaining of serotonergic neurons in rat brain. Our results suggest that, the sexual dimorphism observed in the serotonergic system is due to factors such as 5-HT synthesis, transportation, and degradation but not to the number of serotonergic neurons.


Subject(s)
Dorsal Raphe Nucleus/drug effects , Estradiol/pharmacology , Estrogens/pharmacology , Neurons/drug effects , Serotonin/metabolism , Tryptophan Hydroxylase/metabolism , Animals , Cell Count , Dorsal Raphe Nucleus/cytology , Dorsal Raphe Nucleus/metabolism , Dose-Response Relationship, Drug , Female , Male , Neurons/cytology , Neurons/metabolism , Orchiectomy , Ovariectomy , Rats, Wistar , Sex Factors
17.
Acta Histochem Cytochem ; 47(4): 165-74, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25392570

ABSTRACT

Glucocorticoid receptor (GR) is a ligand-activated nuclear receptor which is widely distributed in the brain. Many types of neurons and glial cells are known to express GR, but the expression of GR in ependymal cells has yet to be identified. The present study therefore was undertaken to determine whether ependymal cells express GR and coactivators of GR, such as steroid receptor coactivator 1 (SRC-1) and p300. GR immunoreactivity was found in cells immunopositive to vimentin, a marker of ependymal cells, around the third ventricle (3V), the lateral ventricle (LV), the cerebral aqueduct and the fourth ventricle (4V), whereas the expression of GR in vimentin-immunoreactive (ir) cells was significantly reduced by adrenalectomy (ADX) in male rats. Vimentin-ir cells also expressed both SRC-1 and p300 at around 3V, LV, the cerebral aqueduct and 4V. ADX had no effect on the expression of SRC-1 or p300 in vimentin-ir cells. These results suggest that glucocorticoid may exert effects on ependymal cells through binding to GR followed by association with SRC-1 and p300 to maintain brain environment under stressful conditions.

18.
J Physiol Sci ; 62(6): 453-60, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22851291

ABSTRACT

Kisspeptins, encoded by Kiss1 gene, play pivotal roles in the regulation of reproduction. Recently, several studies reported a sex difference in Kiss1 expression in the arcuate nucleus (ARC) during the neonatal period. In this study, we investigated the effect of gonadal steroid manipulation on the sex difference in Kiss1 expression in ARC of rats. At neonatal and prepubertal stages, females had a greater number of Kiss1 neurons than the males. Gonadectomy at those stages resulted in significant increases in the Kiss1 neuron number and the sex differences disappeared. We also confirmed the expression of estrogen receptor α in kisspeptin neurons in neonates. Altogether, our results indicate that ARC Kiss1 expression is negatively regulated by gonadal steroids from early postnatal stages, and that the sex difference in ARC Kiss1 expression is attributed to the difference in circulating gonadal steroid levels. We also found that neonatal estrogenization inhibits Kiss1 expression and impairs negative feedback system.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiology , Gonadal Steroid Hormones/metabolism , Kisspeptins/biosynthesis , Kisspeptins/genetics , RNA, Messenger/genetics , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Estrogen Receptor alpha/metabolism , Female , Male , Neurons/metabolism , RNA, Messenger/biosynthesis , Rats , Rats, Wistar , Reproduction , Sex Characteristics
20.
J Reprod Dev ; 57(3): 379-84, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21358145

ABSTRACT

Ketosis is found in various pathophysiological conditions, including diabetes and starvation, that are accompanied by suppression of gonadal activity. The aim of the present study was to determine the role of ketone body in the brain in regulating pulsatile luteinizing hormone (LH) secretion in female rats. Injection of 3-hydroxybutyrate (3HB), a ketone body, into the fourth cerebroventricle (4V) induced suppression of pulsatile LH secretion in a dose-dependent manner in ovariectomized (OVX) rats with an estradiol (E2) implant producing diestrus plasma E2 levels. Plasma glucose and corticosterone levels increased immediately after the 4V 3HB injection, suggesting that the treatment caused a hunger response. The 3HB-induced suppression of LH pulses might be mediated by noradrenergic inputs to the hypothalamic paraventricular nucleus (PVN) because a local injection of α-methyl- p-tyrosine, a catecholamine synthesis inhibitor, into the PVN blocked 3HB-induced suppression of LH pulses and PVN noradrenaline release was increased by 4V 3HB injection in E2-primed OVX rats. These results suggest that ketone body sensed by a central energy sensor in the hindbrain may suppress gonadotropin release via noradrenergic inputs to the PVN under ketosis.


Subject(s)
Ketone Bodies/administration & dosage , Luteinizing Hormone/metabolism , 3-Hydroxybutyric Acid/administration & dosage , Animals , Blood Glucose/drug effects , Catecholamines/antagonists & inhibitors , Catecholamines/biosynthesis , Corticosterone/blood , Female , Fourth Ventricle/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Rats , Rats, Wistar , alpha-Methyltyrosine/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...