Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(3): 1941-1954, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36719971

ABSTRACT

Long-acting (LA) human immunodeficiency virus-1 (HIV-1) antiretroviral therapy characterized by a ≥1 month dosing interval offers significant advantages over daily oral therapy. However, the criteria for compounds that enter clinical development are high. Exceptional potency and low plasma clearance are required to meet dose size requirements; excellent chemical stability and/or crystalline form stability is required to meet formulation requirements, and new antivirals in HIV-1 therapy need to be largely free of side effects and drug-drug interactions. In view of these challenges, the discovery that capsid inhibitors comprising a quinazolinone core tolerate a wide range of structural modifications while maintaining picomolar potency against HIV-1 infection in vitro, are assembled efficiently in a multi-component reaction, and can be isolated in a stereochemically pure form is reported herein. The detailed characterization of a prototypical compound, GSK878, is presented, including an X-ray co-crystal structure and subcutaneous and intramuscular pharmacokinetic data in rats and dogs.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , Rats , Animals , Dogs , Capsid , Capsid Proteins , Quinazolinones/pharmacology , Quinazolinones/therapeutic use , Anti-HIV Agents/pharmacokinetics , HIV Infections/drug therapy
2.
ACS Med Chem Lett ; 12(3): 404-412, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33738068

ABSTRACT

A new series with the tetrahydroisoquinoline-fused benzodiazepine (TBD) ring system combined with the surrogates of (1-methyl-1H-pyrrol-3-yl)benzene ("MPB") payloads were designed and executed for conjugation with a monoclonal antibody for anticancer therapeutics. DNA models helped in rationally identifying modifications of the "MPB" binding component and guided structure-activity relationship generation. This hybrid series of payloads exhibited excellent in vitro activity when tested against a panel of various cancer cell lines. One of the payloads was appended with a lysosome-cleavable peptide linker and conjugated with an anti-mesothelin antibody via a site-specific conjugation method mediated by the enzyme bacterial transglutaminase (BTGase). Antibody-drug conjugate (ADC) 50 demonstrated good plasma stability and lysosomal cleavage. A single intravenous dose of ADC 50 (5 or 10 nmol/kg) showed robust efficacy in an N87 gastric cancer xenograft model.

3.
ACS Med Chem Lett ; 11(11): 2190-2194, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33214828

ABSTRACT

Stability of antibody-drug conjugates (ADCs) in mouse serum is one of the critical requirements for the evaluation of ADCs in mouse tumor models. Described herein is a strategy to address the mouse serum instability of uncialamycin linker-payloads through various chemical approaches that involve modification of different parts of the linker and payload. This effort ultimately led to the identification of a m-amide p-aminobenzyl carbamate (MA-PABC) group that resulted in linkers with dramatic improvement of mouse serum stability without affecting the desired proteolytic cleavage.

4.
ACS Med Chem Lett ; 8(3): 366-371, 2017 Mar 09.
Article in English | MEDLINE | ID: mdl-28337332

ABSTRACT

The therapeutic treatment of negative symptoms and cognitive dysfunction associated with schizophrenia is a significant unmet medical need. Preclinical literature indicates that α7 neuronal nicotinic acetylcholine (nACh) receptor agonists may provide an effective approach to treating cognitive dysfunction in schizophrenia. We report herein the discovery and evaluation of 1c (BMS-933043), a novel and potent α7 nACh receptor partial agonist with high selectivity against other nicotinic acetylcholine receptor subtypes (>100-fold) and the 5-HT3A receptor (>300-fold). In vivo activity was demonstrated in a preclinical model of cognitive impairment, mouse novel object recognition. BMS-933043 has completed Phase I clinical trials.

5.
Bioorg Med Chem Lett ; 27(5): 1261-1266, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28169167

ABSTRACT

Quinuclidine-containing spirooxazolines, as described in the previous report in this series, were demonstrated to have utility as α7 nicotinic acetylcholine receptor (α7 nAChR) partial agonists. In this work, the SAR of this chemotype was expanded to include an array of diazine heterocyclic substitutions. Many of the heterocyclic analogs were potent partial agonists of the α7 receptor, selective against other nicotinic receptors and the serotinergic 5HT3A receptor. (1'S,3'R,4'S)-N-(6-phenylpyrimidin-4-yl)-4H-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octan]-2-amine, a potent and selective α7 nAChR partial agonist, was demonstrated to improve cognition in the mouse novel object recognition (NOR) model of episodic memory.


Subject(s)
Drug Design , Octanes/chemical synthesis , Pyrimidines/chemical synthesis , Spiro Compounds/chemical synthesis , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Cognition/drug effects , Cognition Disorders/drug therapy , Disease Models, Animal , Mice , Molecular Structure , Octanes/chemistry , Octanes/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship
6.
ACS Med Chem Lett ; 8(1): 133-137, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28105289

ABSTRACT

We describe the synthesis of quinuclidine-containing spiroimidates and their utility as α7 nicotinic acetylcholine receptor (nAChR) partial agonists. A convergent synthetic route allowed for rapid SAR investigation and provided a diverse set of fused 6,5-heteroaryl analogs. Two potent and selective α7 nAChR partial agonists, (1'S,3'R,4'S)-N-(7-bromopyrrolo[2,1-f][1,2,4]triazin-4-yl)-4H-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octan]-2-amine (20) and (1'S,3'R,4'S)-N-(7-chloropyrrolo[2,1-f][1,2,4]triazin-4-yl)-4H-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octan]-2-amine (21), were identified. Both agonists improved cognition in a preclinical rodent model of learning and memory. Additionally, 5-HT3A receptor SAR suggested the presence of a steric site that when engaged led to significant loss of affinity at that receptor.

7.
J Med Chem ; 59(24): 11171-11181, 2016 12 22.
Article in English | MEDLINE | ID: mdl-27958732

ABSTRACT

The design and synthesis of a series of quinuclidine-containing spirooxazolidines ("spiroimidates") and their utility as α7 nicotinic acetylcholine receptor partial agonists are described. Selected members of the series demonstrated excellent selectivity for α7 over the highly homologous 5-HT3A receptor. Modification of the N-spiroimidate heterocycle substituent led to (1S,2R,4S)-N-isoquinolin-3-yl)-4'H-4-azaspiro[bicyclo[2.2.2]octane-2,5'oxazol]-2'-amine (BMS-902483), a potent α7 partial agonist, which improved cognition in preclinical rodent models.


Subject(s)
Cyclooctanes/pharmacology , Drug Design , Nicotinic Agonists/pharmacology , Spiro Compounds/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Animals , Cyclooctanes/chemical synthesis , Cyclooctanes/chemistry , Dose-Response Relationship, Drug , Humans , Maze Learning/drug effects , Mice , Molecular Structure , Nicotinic Agonists/chemical synthesis , Nicotinic Agonists/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
8.
PLoS One ; 11(7): e0159996, 2016.
Article in English | MEDLINE | ID: mdl-27467081

ABSTRACT

The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1-10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1-10 mg/kg, sc) and set shift performance in rats (1-10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1-3 mg/kg, po). BMS-933043 also improved auditory gating (0.56-3 mg/kg, sc) and mismatch negativity (0.03-3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans.


Subject(s)
Cognition Disorders/drug therapy , Quinuclidines/therapeutic use , Schizophrenia/drug therapy , Spiro Compounds/therapeutic use , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Cognition Disorders/physiopathology , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Male , Mice , Patch-Clamp Techniques , Quinuclidines/pharmacology , Radioligand Assay , Rats , Schizophrenia/physiopathology , Spiro Compounds/pharmacology
10.
Bioorg Med Chem Lett ; 17(4): 1056-61, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17157013

ABSTRACT

Modulation of PPAR activities represents an attractive approach for the treatment of diabetes with associated cardiovascular complications. The indanylacetic acid structural motif has proven useful in the generation of potent and tunable PPAR ligands. Modification of the substituents on the linker and the heterocycle tail group allowed for the modulation of the selectivity at the different receptor subtypes. Compound 33 was evaluated in vivo, where it displayed the desired reduction of glucose levels and increase in HDL levels in various animal models.


Subject(s)
Acetates/chemical synthesis , Acetates/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Indans/chemical synthesis , Indans/pharmacology , PPAR alpha/agonists , PPAR delta/agonists , PPAR gamma/agonists , Animals , Area Under Curve , Blood Glucose/metabolism , Cells, Cultured , Cholesterol/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Dose-Response Relationship, Drug , Humans , Hydrolysis , Hypoglycemic Agents/pharmacokinetics , Indicators and Reagents , Lipoproteins, HDL/blood , Mice , Rats , Rats, Zucker , Rosiglitazone , Structure-Activity Relationship , Thiazolidinediones/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL