Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 34(26)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36893449

ABSTRACT

In this work, we present a systematic design of growth experiments and subsequent characterization of self-catalyzed molecular beam epitaxially grown GaAsSb heterostructure axial p-i-n nanowires (NWs) on p-Si <111> for the ensemble photodetector (PD) application in the near-infrared region. Diverse growth methods have been explored to gain a better insight into mitigating several growth challenges by systematically studying their impact on the NW electrical and optical properties to realize a high-quality p-i-n heterostructure. The successful growth approaches are Te-dopant compensation to suppress the p-type nature of intrinsic GaAsSb segment, growth interruption for strain relaxation at the interface, decreased substrate temperature to enhance supersaturation and minimize the reservoir effect, higher bandgap compositions of the n-segment of the heterostructure relative to the intrinsic region for boosting the absorption, and the high-temperature ultra-high vacuumin situannealing to reduce the parasitic radial overgrowth. The efficacy of these methods is supported by enhanced photoluminescence (PL) emission, suppressed dark current in the heterostructure p-i-n NWs accompanied by increased rectification ratio, photosensitivity, and a reduced low-frequency noise level. The PD fabricated utilizing the optimized GaAsSb axial p-i-n NWs exhibited the longer wavelength cutoff at ∼1.1µm with a significantly higher responsivity of ∼120 A W-1(@-3 V bias) and a detectivity of 1.1 × 1013Jones operating at room temperature. Frequency and the bias independent capacitance in the pico-Farad (pF) range and substantially lower noise level at the reverse biased condition, show the prospects of p-i-n GaAsSb NWs PD for high-speed optoelectronic applications.

2.
Nanotechnology ; 33(42)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35772308

ABSTRACT

Recent advances in the growth of III-V semiconductor nanowires (NWs) hold great promise for nanoscale optoelectronic device applications. It is established that a small amount of nitrogen (N) incorporation in III-V semiconductor NWs can effectively red-shift their wavelength of operation and tailor their electronic properties for specific applications. However, understanding the impact of N incorporation on non-equilibrium charge carrier dynamics and transport in semiconducting NWs is critical in achieving efficient semiconducting NW devices. In this work, ultrafast optical pump-terahertz probe spectroscopy has been used to study non-equilibrium carrier dynamics and transport in Te-doped GaAsSb and dilute nitride GaAsSbN NWs, with the goal of correlating these results with electrical characterization of their equilibrium photo-response under bias and low-frequency noise characteristics. Nitrogen incorporation in GaAsSb NWs led to a significant increase in the carrier scattering rate, resulting in a severe reduction in carrier mobility. Carrier recombination lifetimes of 33 ± 1 picoseconds (ps) and 147 ± 3 ps in GaAsSbN and GaAsSb NWs, respectively, were measured. The reduction in the carrier lifetime and photoinduced optical conductivities are due to the presence of N-induced defects, leading to deterioration in the electrical and optical characteristics of dilute nitride NWs relative to the non-nitride NWs. Finally, we observed a very fast rise time of âˆ¼2 ps for both NW materials, directly impacting their potential use as high-speed photodetectors.

3.
Nanotechnology ; 33(31)2022 May 11.
Article in English | MEDLINE | ID: mdl-35468592

ABSTRACT

This work evaluates the passivation efficacy of thermal atomic layer deposited (ALD) Al2O3dielectric layer on self-catalyzed GaAs1-xSbxnanowires (NWs) grown using molecular beam epitaxy. A detailed assessment of surface chemical composition and optical properties of Al2O3passivated NWs with and without prior sulfur treatment were studied and compared to as-grown samples using x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature photoluminescence (PL) spectroscopy. The XPS measurements reveal that prior sulfur treatment followed by Al2O3ALD deposition abates III-V native oxides from the NW surface. However, the degradation in 4K-PL intensity by an order of magnitude observed for NWs with Al2O3shell layer compared to the as-grown NWs, irrespective of prior sulfur treatment, suggests the formation of defect states at the NW/dielectric interface contributing to non-radiative recombination centers. This is corroborated by the Raman spectral broadening of LO and TO Raman modes, increased background scattering, and redshift observed for Al2O3deposited NWs relative to the as-grown. Thus, our work seems to indicate the unsuitability of ALD deposited Al2O3as a passivation layer for GaAsSb NWs.

4.
Sci Rep ; 11(1): 8329, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33859310

ABSTRACT

We report the first study on doping assessment in Te-doped GaAsSb nanowires (NWs) with variation in Gallium Telluride (GaTe) cell temperature, using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), conductive-atomic force microscopy (C-AFM), and scanning Kelvin probe microscopy (SKPM). The NWs were grown using Ga-assisted molecular beam epitaxy with a GaTe captive source as the dopant cell. Te-incorporation in the NWs was associated with a positive shift in the binding energy of the 3d shells of the core constituent elements in doped NWs in the XPS spectra, a lowering of the work function in doped NWs relative to undoped ones from UPS spectra, a significantly higher photoresponse in C-AFM and an increase in surface potential of doped NWs observed in SKPM relative to undoped ones. The carrier concentration of Te-doped GaAsSb NWs determined from UPS spectra are found to be consistent with the values obtained from simulated I-V characteristics. Thus, these surface analytical tools, XPS/UPS and C-AFM/SKPM, that do not require any sample preparation are found to be powerful characterization techniques to analyze the dopant incorporation and carrier density in homogeneously doped NWs.

5.
Sci Rep ; 11(1): 4651, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33633245

ABSTRACT

This study presents the first report on patterned nanowires (NWs) of dilute nitride GaAsSbN on p-Si (111) substrates by self-catalyzed plasma-assisted molecular beam epitaxy. Patterned NW array with GaAsSbN of Sb composition of 3% as a stem provided the best yield of vertical NWs. Large bandgap tuning of ~ 75 meV, as ascertained from 4 K photoluminescence (PL), over a pitch length variation of 200-1200 nm has been demonstrated. Pitch-dependent axial and radial growth rates show a logistic sigmoidal growth trend different from those commonly observed in other patterned non-nitride III-V NWs. The sigmoidal fitting provides further insight into the PL spectral shift arising from differences in Sb and N incorporation from pitch induced variation in secondary fluxes. Results indicate that sigmoidal fitting can be a potent tool for designing patterned NW arrays of optimal pitch length for dilute nitrides and other highly mismatched alloys and heterostructures.

6.
Nanotechnology ; 31(50): 505203, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33021209

ABSTRACT

This work reports a comprehensive investigation of the effect of gallium telluride (GaTe) cell temperature variation (TGaTe) on the morphological, optical, and electrical properties of doped-GaAsSb nanowires (NWs) grown by Ga-assisted molecular beam epitaxy (MBE). These studies led to an optimum doping temperature of 550 °C for the growth of tellurium (Te)-doped GaAsSb NWs with the best optoelectronic and structural properties. Te incorporation resulted in a decrease in the aspect ratio of the NWs causing an increase in the Raman longitudinal optical/transverse optical vibrational mode intensity ratio, large photoluminescence emission with an exponential decay tail on the high energy side, promoting tunnel-assisted current conduction in ensemble NWs and significant photocurrent enhancement in the single nanowire. A Schottky barrier photodetector (PD) using Te-doped ensemble NWs with broad spectral range and a longer wavelength cutoff at ∼1.2 µm was demonstrated. These PDs exhibited responsivity in the range of 580-620 A W-1 and detectivity of 1.2-3.8 × 1012 Jones. The doped GaAsSb NWs have the potential for further improvement, paving the path for high-performance near-infrared (NIR) photodetection applications.

7.
Sci Rep ; 10(1): 8995, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32488009

ABSTRACT

Intrinsic and Te-doped GaAsSb nanowires with diameters ~100-120 nm were grown on a p-type Si(111) substrate by molecular beam epitaxy (MBE). Detailed magnetic, current/voltage and low-energy electron energy loss spectroscopy measurements were performed to investigate the effect of Te-doping. While intrinsic nanowires are diamagnetic over the temperature range 5-300 K, the Te-doped nanowires exhibit ferromagnetic behavior with the easy axis of magnetism perpendicular to the longitudinal axis of the nanowire. The temperature dependence of coercivity was analyzed and shown to be in agreement with a thermal activation model from 50-350 K but reveal more complex behavior in the low temperature regime. The EELS data show that Te doping introduced a high density of states (DOS) in the nanowire above the Fermi level in close proximity to the conduction band. The plausible origin of ferromagnetism in these Te-doped GaAsSb nanowires is discussed on the basis of d0 ferromagnetism, spin ordering of the Te dopants and the surface-state-induced magnetic ordering.

8.
Nanotechnology ; 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32187593

ABSTRACT

In this work, the first observation of the space charge limited conduction mechanism (SCLC) in GaAsSb nanowires (NWs) grown by Ga-assisted molecular beam epitaxial technique, and the effect of ultrahigh vacuum in-situ annealing have been investigated. The low onset voltage of the SCLC in the NW configuration has been advantageously exploited to extract trap density and trap distribution in the bandgap of this material system, using simple temperature dependent current-voltage measurements in both the ensemble and single nanowires. In-situ annealing in an ultra-high vacuum revealed significant reduction in the trap density from 1016 cm-3 in as-grown NWs to a low level of 7 * 1014 cm-3 and confining wider trap distribution to a single trap depth at 0.12 eV. A comparison of current conduction mechanism in the respective single nanowires using conductive atomic force microscopy (C-AFM) further confirms the SCLC mechanism identified in GaAsSb ensemble device to be intrinsic. Higher current observed in current mapping by C-AFM, increased 4K photoluminescence (PL) intensity along with reduced full-width half maxima and more symmetric PL spectra, reduced asymmetrical broadening and increased TO/LO mode in room temperature Raman spectra for in-situ annealed NWs again attest to effective annihilation of traps leading to the improved optical quality of NWs compared to as-grown NWs. Hence, the I-V-T analysis of the SCLC mechanism has been demonstrated to be a simple approach to obtain information on growth induced traps in the NWs.

9.
Nanotechnology ; 31(2): 025205, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31553959

ABSTRACT

In this work, the first observation of the space charge limited conduction mechanism (SCLC) in GaAsSb nanowires (NWs) grown by Ga-assisted molecular beam epitaxial technique, and the effect of ultra-high vacuum in situ annealing have been investigated. The low onset voltage of the SCLC in the NW configuration has been advantageously exploited to extract trap density and trap distribution in the bandgap of this material system, using simple temperature dependent current-voltage measurements in both the ensemble and single nanowires. In situ annealing in ultra-high vacuum revealed significant reduction in the trap density from 1016 cm-3 in as-grown NWs to a low level of 7 × 1014 cm-3 and confining wider trap distribution to a single trap depth at 0.12 eV. A comparison of current conduction mechanism in the respective single nanowires using conductive atomic force microscopy (C-AFM) further confirms the SCLC mechanism identified in GaAsSb ensemble device to be intrinsic. Higher current observed in current mapping by C-AFM, increased 4 K photoluminescence (PL) intensity along with reduced full-width half maxima and more symmetric PL spectra, and reduced asymmetrical broadening with increased TO/LO mode in room temperature Raman spectra for in situ annealed NWs again attest to effective annihilation of traps leading to the improved optical quality of NWs compared to as-grown NWs. Hence, the I-V-T analysis of the SCLC mechanism has been demonstrated as a simple approach to obtain information on growth induced traps in the NWs.

10.
Nanotechnology ; 30(27): 275203, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-30865932

ABSTRACT

We report on the bandgap engineering of the GaAsSb/GaAsSbN heterostructured nanowires (NWs) in the core-shell architecture using the unique properties of dilute nitride material system for near-infrared photodetection. A high density of vertical GaAsSb/GaAsSb(N)/GaAlAs core-multishell configured NWs with well faceted, smooth surface morphology has been grown on Si (111) substrates using Ga-assisted molecular beam epitaxy. A low Sb content GaAsSb core has been shown to enable the coherently strained growth of dilute nitride shell with higher Sb content in GaAsSbN shell NWs. A systematic study of N and V/III beam equivalent pressure ratios is carried out to achieve the large band-gap reduction, while successfully incorporating higher Sb content in the dilute nitride shells (GaAs1-x Sb x N; x = 0.27). The incorporation of N acts to relieve strain and provide a smooth surface morphology as well as redshift the 4K photoluminescence (PL) peak energy by ∼160 meV in comparison to a non-nitride shell. The selected area diffraction pattern confirms zinc-blende structure in all the NWs and did not show any noticeable planar defects in dilute nitride NWs. We successfully, thus demonstrate GaAsSb/GaAsSbN/GaAlAs core-shell NWs by engineering the lattice strain of nitride shell with the non-nitride ternary core, for extending the 4K photoemission up to 1.43 µm.

11.
Nanotechnology ; 30(3): 034005, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30212376

ABSTRACT

In this work, we report on the p-i GaAsSb/AlGaAs nanowires (NWs) ensemble device exhibiting good spectral response up to 1.1 µm with a high responsivity of 311 A W-1, an external quantum efficiency of 6.1 × 104%, and a detectivity of 1.9 × 1010 Jones at 633 nm. The high responsivity of the NWs has been attributed to in situ post-growth annealing of GaAsSb axial NWs in the ultra-high vacuum. The enabling growth technology is molecular beam epitaxy for the Ga-assisted epitaxial growth of these NWs on Si (111) substrates. Room temperature Raman spectra, as well as temperature dependent micro-photoluminescence peak analysis indicated suppression of band tail states and non-radiative channels due to annealing. A similar improvement in in situ annealed p-i GaAsSb NW ensemble with an AlGaAs passivating shell was inferred from a reduction in the Schottky barrier height as well as the NW resistance compared to the as-grown NW ensemble. These results demonstrate in situ annealing of nanowires to be an effective pathway for improving the optoelectronic properties of the NWs and the device thereof.

12.
Sci Rep ; 7(1): 10111, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860507

ABSTRACT

Self-catalyzed growth of axial GaAs1-xSbx nanowire (NW) arrays with bandgap tuning corresponding to the telecommunication wavelength of 1.3 µm poses a challenge, as the growth mechanism for axial configuration is primarily thermodynamically driven by the vapor-liquid-solid growth process. A systematic study carried out on the effects of group V/III beam equivalent (BEP) ratios and substrate temperature (Tsub) on the chemical composition in NWs and NW density revealed the efficacy of a two-step growth temperature sequence (initiating the growth at relatively higher Tsub = 620 °C and then continuing the growth at lower Tsub) as a promising approach for obtaining high-density NWs at higher Sb compositions. The dependence of the Sb composition in the NWs on the growth parameters investigated has been explained by an analytical relationship between the effective vapor composition and NW composition using relevant kinetic parameters. A two-step growth approach along with a gradual variation in Ga-BEP for offsetting the consumption of the droplets has been explored to realize long NWs with homogeneous Sb composition up to 34 at.% and photoluminescence emission reaching 1.3 µm at room temperature.

13.
Nanoscale Res Lett ; 11(1): 47, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26831685

ABSTRACT

The effects of ex-situ annealing in a N2 ambient on the properties of GaAs/GaAsSbN/GaAs core-multi-shell nanowires on Si (111) substrate grown by self-catalyzed molecular beam epitaxy (MBE) are reported. As-grown nanowires exhibit band edge emission at ~0.99 eV with a shoulder peak at ~0.85 eV, identified to arise from band tail states. A large red shift of 7 cm(-1) and broadened Raman spectra of as-grown nanowires compared to that of non-nitride nanowires confirmed phonon localization at N-induced localized defects. On annealing nanowires to 750 °C, there was no change in the planar defects in the nanowire with respect to the as-grown nanowire; however, vanishing of the photoluminescence (PL) peak corresponding to band tail states along with enhanced band edge PL intensity, recovery of the Raman shift and increase in the Schottky barrier height from 0.1 to 0.4 eV clearly point to the efficient annihilation of point defects in these GaAsSbN nanowires. A significant reduction in the temperature-induced energy shift in the annealed nanowires is attributed to annihilation of band tail states and weak temperature dependence of N-related localized states. The observation of room temperature PL signal in the 1.3 µm region shows that the strategy of adding small amounts of N to GaAsSb is a promising route to realization of efficient nanoscale light emitters with reduced temperature sensitivity in the telecommunication wavelength region.

14.
Pharmacognosy Res ; 7(1): 114-20, 2015.
Article in English | MEDLINE | ID: mdl-25598645

ABSTRACT

An excess production or decreased scavenging of reactive oxygen species (ROS) has been implicated in the pathogenesis of diverse metabolic disorders such as diabetes, cancer, atherosclerosis and neurodegeneration. Hence the antioxidant therapy has gained an utmost importance in the treatment of such diseases linked to free radicals. The medicinal properties of plants have been investigated and explored for their potent antioxidant activities to counteract metabolic disorders. This research highlights the chemical composition and antioxidant potential of leaf gall extracts (aqueous and methanol) of Ficus glomerata (F. glomerata), which is extensively used in the preparation of traditional medications to treat various metabolic diseases. The presences of phenolics, flavonoids, phytosterols, terpenoids and reducing sugars were identified in both the extracts. In comparison to the aqueous extract, the methanol extract had the highest total phenolic and flavonoid content at 370 ± 3.2 mg of gallic acid equivalent per gram of dry weight (mg GAE/g dw) and 155 ± 3.2 mg of quercetin equivalent per gram of dry weight (mg QUE/g dw), respectively. The antioxidant activities of leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), Nitric oxide scavenging, hydroxyl scavenging and ferric reducing power (FRAP) methods. In all the methods, the methanolic extract showed higher antioxidant potential than the aqueous extract. A higher content of both total phenolics and flavonoids were found in the methanolic extract and the significantly high antioxidant activity can be positively correlated to the high content of total polyphenols/flavonoids of the methanol extract. The results of this study confirm the folklore use of F. glomerata leaf gall extracts as a natural antioxidant and justify its ethnobotanical use. Further, the results of antioxidant properties encourage the use of F. glomerata leaf gall extracts for medicinal health, functional food and nutraceuticals applications. Future work will be interesting in knowing the chemical composition and better understand the mechanism of action of the antioxidants present for development as drug for its therapeutic application.

SELECTION OF CITATIONS
SEARCH DETAIL
...