Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Cancer ; 154(3): 561-572, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37675956

ABSTRACT

Metastatic (as well as tumor) microenvironments contain both cancer-promoting and cancer-restraining factors. The balance between these opposing forces determines the fate of cancer cells that disseminate to secondary organ sites. In search for microenvironmental drivers or inhibitors of metastasis, we identified, in a previous study, the beta subunit of hemoglobin (HBB) as a lung-derived antimetastatic factor. In the present study, exploring mechanisms regulating melanoma brain metastasis, we discovered that brain-derived factors restrain proliferation and induce apoptosis and necrosis of brain-metastasizing melanoma cells. Employing various purification procedures, we identified a heterodimer composed of hemoglobin alpha and beta chains that perform these antimetastatic functions. Neither the alpha nor the beta subunit alone was inhibitory. An alpha/beta chain dimer chemically purified from human hemoglobin inhibited the cell viability of primary melanomas, melanoma brain metastasis (MBM), and breast cancer cell lines. The dimer-induced DNA damage, cell cycle arrest at the SubG1 phase, apoptosis, and significant necrosis in four MBM cell lines. Proteomic analysis of dimer-treated MBM cells revealed that the dimer downregulates the expression of BRD4, GAB2, and IRS2 proteins, playing crucial roles in cancer cell sustainability and progression. Thus, we hypothesize that the hemoglobin dimer functions as a resistance factor against brain-metastasizing cancer cells.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Melanoma , Humans , Melanoma/genetics , Nuclear Proteins , Proteomics , Transcription Factors , Brain Neoplasms/genetics , Hemoglobins , Antineoplastic Agents/pharmacology , Necrosis , Cell Line, Tumor , Tumor Microenvironment , Bromodomain Containing Proteins , Cell Cycle Proteins
2.
Cancers (Basel) ; 15(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894348

ABSTRACT

Reciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, we employed RNA-seq and reverse-phase protein array (RPPA). To test microglial JunB functions, we generated microglia variants stably overexpressing JunB (JunBhi) or with downregulated levels of JunB (JunBlo). Melanoma-derived factors, namely leukemia inhibitory factor (LIF), controlled JunB upregulation through Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling. The expression levels of JunB in melanoma-associated microglia were heterogeneous. Flow cytometry analysis revealed the existence of basal-level JunB-expressing microglia alongside microglia highly expressing JunB. Proteomic profiling revealed a differential protein expression in JunBhi and JunBlo cells, namely the expression of microglia activation markers Iba-1 and CD150, and the immunosuppressive molecules SOCS3 and PD-L1. Functionally, JunBhi microglia displayed decreased migratory capacity and phagocytic activity. JunBlo microglia reduced melanoma proliferation and migration, while JunBhi microglia preserved the ability of melanoma cells to proliferate in three-dimensional co-cultures, that was abrogated by targeting leukemia inhibitory factor receptor (LIFR) in control microglia-melanoma spheroids. Altogether, these data highlight a melanoma-mediated heterogenous effect on microglial JunB expression, dictating the nature of their functional involvement in MBM progression. Targeting microglia highly expressing JunB may potentially be utilized for MBM theranostics.

3.
Cells ; 12(11)2023 05 30.
Article in English | MEDLINE | ID: mdl-37296634

ABSTRACT

Previous studies from our lab demonstrated that the crosstalk between brain-metastasizing melanoma cells and microglia, the macrophage-like cells of the central nervous system, fuels progression to metastasis. In the present study, an in-depth investigation of melanoma-microglia interactions elucidated a pro-metastatic molecular mechanism that drives a vicious melanoma-brain-metastasis cycle. We employed RNA-Sequencing, HTG miRNA whole transcriptome assay, and reverse phase protein arrays (RPPA) to analyze the impact of melanoma-microglia interactions on sustainability and progression of four different human brain-metastasizing melanoma cell lines. Microglia cells exposed to melanoma-derived IL-6 exhibited upregulated levels of STAT3 phosphorylation and SOCS3 expression, which, in turn, promoted melanoma cell viability and metastatic potential. IL-6/STAT3 pathway inhibitors diminished the pro-metastatic functions of microglia and reduced melanoma progression. SOCS3 overexpression in microglia cells evoked microglial support in melanoma brain metastasis by increasing melanoma cell migration and proliferation. Different melanomas exhibited heterogeneity in their microglia-activating capacity as well as in their response to microglia-derived signals. In spite of this reality and based on the results of the present study, we concluded that the activation of the IL-6/STAT3/SOCS3 pathway in microglia is a major mechanism by which reciprocal melanoma-microglia signaling engineers the interacting microglia to reinforce the progression of melanoma brain metastasis. This mechanism may operate differently in different melanomas.


Subject(s)
Brain Neoplasms , Melanoma , Humans , Microglia/metabolism , Interleukin-6/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Melanoma/pathology , Brain Neoplasms/metabolism , Brain/metabolism , STAT3 Transcription Factor/metabolism
4.
Clin Exp Metastasis ; 39(1): 85-99, 2022 02.
Article in English | MEDLINE | ID: mdl-33970362

ABSTRACT

Cancer heterogeneity is a result of genetic mutations within the cancer cells. Their proliferation is not only driven by autocrine functions but also under the influence of cancer microenvironment, which consists of normal stromal cells such as infiltrating immune cells, cancer-associated fibroblasts, endothelial cells, pericytes, vascular and lymphatic channels. The relationship between cancer cells and cancer microenvironment is a critical one and we are just on the verge to understand it on a molecular level. Cancer microenvironment may serve as a selective force to modulate cancer cells to allow them to evolve into more aggressive clones with ability to invade the lymphatic or vascular channels to spread to regional lymph nodes and distant sites. It is important to understand these steps of cancer evolution within the cancer microenvironment towards invasion so that therapeutic strategies can be developed to control or stop these processes.


Subject(s)
Neoplasms , Tumor Microenvironment , Endothelial Cells , Genomics , Humans , Lymph Nodes/pathology , Neoplasms/blood supply , Tumor Microenvironment/genetics
5.
Arch Toxicol ; 95(7): 2279-2297, 2021 07.
Article in English | MEDLINE | ID: mdl-34003341

ABSTRACT

Over the last decade, important clinical benefits have been achieved in cancer patients by using drug-targeting strategies. Nevertheless, drug resistance is still a major problem in most cancer therapies. Epithelial-mesenchymal plasticity (EMP) and tumour microenvironment have been described as limiting factors for effective treatment in many cancer types. Moreover, epithelial-to-mesenchymal transition (EMT) has also been associated with therapy resistance in many different preclinical models, although limited evidence has been obtained from clinical studies and clinical samples. In this review, we particularly deepen into the mechanisms of which intermediate epithelial/mesenchymal (E/M) states and its interconnection to microenvironment influence therapy resistance. We also describe how the use of bioinformatics and pharmacogenomics will help to figure out the biological impact of the EMT on drug resistance and to develop novel pharmacological approaches in the future.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasms , Drug Resistance, Neoplasm , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Microenvironment
6.
Int J Cancer ; 148(6): 1308-1322, 2021 03 15.
Article in English | MEDLINE | ID: mdl-32761606

ABSTRACT

The conclusion derived from the information provided in this review is that disseminating tumor cells (DTC) collaborate with the microenvironment of a future metastatic organ site in the establishment of organ-specific metastasis. We review the basic principles of site-specific metastasis and the contribution of the cross talk between DTC and the microenvironment of metastatic sites (metastatic microenvironment [MME]) to the establishment of the organ-specific premetastatic niche; the targeted migration of DTC to the endothelium of the future organ-specific metastasis; the transmigration of DTC to this site and the seeding and colonization of DTC in their future MME. We also discuss the role played by DTC-MME interactions on tumor dormancy and on the differential response of tumor cells residing in different MMEs to antitumor therapy. Finally, we summarize some studies dealing with the effects of the MME on a unique site-specific metastasis-brain metastasis.


Subject(s)
Neoplasm Metastasis/pathology , Neoplastic Cells, Circulating/pathology , Tumor Microenvironment/physiology , Animals , Humans
7.
Mol Oncol ; 15(5): 1376-1390, 2021 05.
Article in English | MEDLINE | ID: mdl-33274599

ABSTRACT

Previous studies indicated that microglia cells upregulate the expression of aldolase C (ALDOC) in melanoma cells. The present study using brain-metastasizing variants from three human melanomas explores the functional role of ALDOC in the formation and maintenance of melanoma brain metastasis (MBM). ALDOC overexpression impacted differentially the malignant phenotype of these three variants. In the first variant, ALDOC overexpression promoted cell viability, adhesion to and transmigration through a layer of brain endothelial cells, and amplified brain micrometastasis formation. The cross-talk between this MBM variant and microglia cells promoted the proliferation and migration of the latter cells. In sharp contrast, ALDOC overexpression in the second brain-metastasizing melanoma variant reduced or did not affect the same malignancy features. In the third melanoma variant, ALDOC overexpression augmented certain characteristics of malignancy and reduced others. The analysis of biological functions and disease pathways in the ALDOC overexpressing variants clearly indicated that ALDOC induced the expression of tumor progression promoting genes in the first variant and antitumor progression properties in the second variant. Overall, these results accentuate the complex microenvironment interactions between microglia cells and MBM, and the functional impact of intertumor heterogeneity. Since intertumor heterogeneity imposes a challenge in the planning of cancer treatment, we propose to employ the functional response of tumors with an identical histology, to a particular drug or the molecular signature of this response, as a predictive indicator of response/nonresponse to this drug.


Subject(s)
Brain Neoplasms/secondary , Fructose-Bisphosphate Aldolase/physiology , Melanoma/pathology , Tumor Microenvironment/physiology , Animals , Biological Variation, Population/genetics , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Survival/genetics , Fructose-Bisphosphate Aldolase/genetics , HEK293 Cells , Humans , Male , Melanoma/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Phenotype , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Tumor Microenvironment/genetics
8.
Cells ; 9(7)2020 07 13.
Article in English | MEDLINE | ID: mdl-32668704

ABSTRACT

Granulocyte-monocyte colony stimulating factor (GM-CSF) is used as an adjuvant in various clinical and preclinical studies with contradictory results. These were attributed to opposing effects of GM-CSF on the immune or myeloid systems of the treated patients or to lack of optimal dosing regimens. The results of the present study point to inter-tumor heterogeneity as a possible mechanism accounting for the contrasting responses to GM-CSF incorporating therapies. Employing xenograft models of human melanomas in nude mice developed in our lab, we detected differential functional responses of melanomas from different patients to GM-CSF both in vitro as well as in vivo. Whereas cells of one melanoma acquired pro metastatic features following exposure to GM-CSF, cells from another melanoma either did not respond or became less malignant. We propose that inter-melanoma heterogeneity as manifested by differential responses of melanoma cells (and perhaps also of other tumor) to GM-CSF may be developed into a predictive marker providing a tool to segregate melanoma patients who will benefit from GM-CSF therapy from those who will not.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Melanoma/pathology , Skin Neoplasms/pathology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Brain/pathology , Cell Line, Tumor , Cellular Microenvironment/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Interleukin-1alpha/metabolism , Male , Mice, Inbred BALB C , Mice, Nude , Solubility , Transendothelial and Transepithelial Migration/drug effects , Tumor Necrosis Factor-alpha/metabolism
9.
Mol Oncol ; 14(8): 1760-1778, 2020 08.
Article in English | MEDLINE | ID: mdl-32358995

ABSTRACT

Melanoma metastasis to the brain is one of the most frequent extracranial brain tumors. Cell surface gangliosides are elevated in melanoma metastasis; however, the metabolic regulatory mechanisms that govern these specific changes are poorly understood in melanoma particularly brain metastases (MBM) development. We found ganglioside GD3 levels significantly upregulated in MBM compared to lymph node metastasis (LNM) but not for other melanoma gangliosides. Moreover, we demonstrated an upregulation of ST8SIA1 (GD3 synthase) as melanoma progresses from melanocytes to MBM cells. Using RNA-ISH on FFPE specimens, we evaluated ST8SIA1 expression in primary melanomas (PRM) (n = 23), LNM and visceral metastasis (n = 45), and MBM (n = 39). ST8SIA1 was significantly enhanced in MBM compared to all other specimens. ST8SIA1 expression was assessed in clinically well-annotated melanoma patients from multicenters with AJCC stage III B-D LNM (n = 58) with 14-year follow-up. High ST8SIA1 expression was significantly associated with poor overall survival (HR = 3.24; 95% CI, 1.19-8.86, P = 0.02). In a nude mouse human xenograft melanoma brain metastasis model, MBM variants had higher ST8SIA1 expression than their respective cutaneous melanoma variants. Elevated ST8SIA1 expression enhances levels of cell surface GD3, a phenotype that favors MBM development, hence associated with very poor prognosis. Functional assays demonstrated that ST8SIA1 overexpression enhanced cell proliferation and colony formation, whereby ST8SIA1 knockdown had opposite effects. Icaritin a plant-derived phytoestrogen treatment significantly inhibited cell growth in high GD3-positive MBM cells through targeting the canonical NFκB pathway. The study demonstrates GD3 phenotype associates with melanoma progression and poor outcome.


Subject(s)
Brain Neoplasms/pathology , Gangliosides/metabolism , Melanoma/pathology , Up-Regulation , Animals , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Proliferation/drug effects , Female , Flavonoids/pharmacology , Humans , Lymphatic Metastasis/pathology , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Multivariate Analysis , Phenotype , Prognosis , Proportional Hazards Models , Sialyltransferases/metabolism , Tumor Stem Cell Assay , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
10.
Mol Cell Proteomics ; 19(3): 478-489, 2020 03.
Article in English | MEDLINE | ID: mdl-31892524

ABSTRACT

The prediction of metastatic properties from molecular analyses still poses a major challenge. Here we aimed at the classification of metastasis-related cell properties by proteome profiling making use of cutaneous and brain-metastasizing variants from single melanomas sharing the same genetic ancestry. Previous experiments demonstrated that cultured cells derived from these xenografted variants maintain a stable phenotype associated with a differential metastatic behavior: The brain metastasizing variants produce more spontaneous micro-metastases than the corresponding cutaneous variants. Four corresponding pairs of cutaneous and metastatic cells were obtained from four individual patients, resulting in eight cell-lines presently investigated. Label free proteome profiling revealed significant differences between corresponding pairs of cutaneous and cerebellar metastases from the same patient. Indeed, each brain metastasizing variant expressed several apparently metastasis-associated proteomic alterations as compared with the corresponding cutaneous variant. Among the differentially expressed proteins we identified cell adhesion molecules, immune regulators, epithelial to mesenchymal transition markers, stem cell markers, redox regulators and cytokines. Similar results were observed regarding eicosanoids, considered relevant for metastasis, such as PGE2 and 12-HETE. Multiparametric morphological analysis of cells also revealed no characteristic alterations associated with the cutaneous and brain metastasis variants. However, no correct classification regarding metastatic potential was yet possible with the present data. We thus concluded that molecular profiling is able to classify cells according to known functional categories but is not yet able to predict relevant cell properties emerging from networks consisting of many interconnected molecules. The presently observed broad diversity of molecular patterns, irrespective of restricting to one tumor type and two main classes of metastasis, highlights the important need to develop meta-analysis strategies to predict cell properties from molecular profiling data. Such base knowledge will greatly support future individualized precision medicine approaches.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Melanoma/metabolism , Skin Neoplasms/metabolism , Animals , Brain Neoplasms/secondary , Cell Line, Tumor , Cytoplasm/metabolism , Heterografts , Humans , Male , Melanoma/pathology , Mice, Nude , Proteome , Proteomics , Skin Neoplasms/pathology
11.
Front Neurosci ; 13: 297, 2019.
Article in English | MEDLINE | ID: mdl-31024232

ABSTRACT

Neural repair after stroke involves initiation of a cellular proliferative program in the form of angiogenesis, neurogenesis, and molecular growth signals in the surrounding tissue elements. This cellular environment constitutes a niche in which regeneration of new blood vessels and new neurons leads to partial tissue repair after stroke. Cancer metastasis has similar proliferative cellular events in the brain and other organs. Do cancer and CNS tissue repair share similar cellular processes? In this study, we identify a novel role of the regenerative neurovascular niche induced by stroke in promoting brain melanoma metastasis through enhancing cellular interactions with surrounding niche components. Repair-mediated neurovascular signaling induces metastatic cells to express genes crucial to metastasis. Mimicking stroke-like conditions in vitro displays an enhancement of metastatic migration potential and allows for the determination of cell-specific signals produced by the regenerative neurovascular niche. Comparative analysis of both in vitro and in vivo expression profiles reveals a major contribution of endothelial cells in mediating melanoma metastasis. These results point to a previously undiscovered role of the regenerative neurovascular niche in shaping the tumor microenvironment and brain metastatic landscape.

12.
Int J Cancer ; 144(4): 802-817, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29992556

ABSTRACT

Melanoma has the highest propensity to metastasize to the brain compared to other cancers, as brain metastases are found frequently high in patients who have prolonged survival with visceral metastasis. Once disseminated in the brain, melanoma cells communicate with brain resident cells that include astrocytes and microglia. Microglia cells are the resident macrophages of the brain and are the main immunological cells in the CNS involved in neuroinflammation. Data on the interactions between brain metastatic melanoma cells and microglia and on the role of microglia-mediated neuroinflammation in facilitating melanoma brain metastasis are lacking. To elucidate the role of microglia in melanoma brain metastasis progression, we examined the bidirectional interactions between microglia and melanoma cells in the tumor microenvironment. We identified the molecular and functional modifications occurring in brain-metastasizing melanoma cells and microglia cells after the treatment of each cell type with supernatants of the counter cell type. Both cells induced alteration in gene expression programs, cell signaling, and cytokine secretion in the counter cell type. Moreover, melanoma cells exerted significant morphological changes on microglia cells, enhanced proliferation, induced matrix metalloproteinase-2 (MMP-2) activation, and cell migration. Microglia cells induced phenotypic changes in melanoma cells increasing their malignant phenotype: increased melanoma proliferation, MMP-2 activity, cell migration, brain endothelial penetration, and tumor cells ability to grow as spheroids in 3D cultures. Our work provides a novel insight into the bidirectional interactions between melanoma and micoglia cells, suggesting the contribution of microglia to melanoma brain metastasis formation.


Subject(s)
Brain Neoplasms/genetics , Melanoma/genetics , Microglia/metabolism , Skin Neoplasms/genetics , Tumor Microenvironment/genetics , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Cell Communication/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Melanoma/metabolism , Melanoma/pathology , Mice, Nude , Microglia/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Transplantation, Heterologous
13.
Clin Exp Metastasis ; 35(5-6): 369-378, 2018 08.
Article in English | MEDLINE | ID: mdl-29722001

ABSTRACT

The development of melanoma brain metastasis is largely dependent on mutual interactions between the melanoma cells and cells in the brain microenvironment. Here, we report that the extracellular cysteine protease inhibitor cystatin C (CysC) is involved in these interactions. Microglia-derived factors upregulated CysC secretion by melanoma. Similarly, melanoma-derived factors upregulated CysC secretion by microglia. Whereas CysC enhanced melanoma cell migration through a layer of brain endothelial cells, it inhibited the migration of microglia cells toward melanoma cells. CysC was also found to promote the formation of melanoma three-dimensional structures in matrigel. IHC analysis revealed increased expression levels of CysC in the brain of immune-deficient mice bearing xenografted human melanoma brain metastasis compared to the brain of control mice. Based on these in vitro and in vivo experiments we hypothesize that CysC promotes melanoma brain metastasis. Increased expression levels of CysC were detected in the regenerating brain of mice after stroke. Post-stroke brain with melanoma brain metastasis showed an even stronger expression of CysC. The in vitro induction of stroke-like conditions in brain microenvironmental cells increased the levels of CysC in the secretome of microglia cells, but not in the secretome of brain endothelial cells. The similarities between melanoma brain metastasis and stroke with respect to CysC expression by and secretion from microglia cells suggest that CysC may be involved in shared pathways between brain metastasis and post-stroke regeneration. This manifests the tendency of tumor cells to highjack physiological molecular pathways in their progression.


Subject(s)
Brain Neoplasms/genetics , Cystatin C/genetics , Melanoma/genetics , Microglia/metabolism , Animals , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Cell Line, Tumor , Cell Movement/genetics , Collagen/pharmacology , Cysteine Proteinase Inhibitors/metabolism , Drug Combinations , Gene Expression Regulation, Neoplastic , Humans , Laminin/pharmacology , Melanoma/pathology , Mice , Microglia/pathology , Neoplasm Metastasis , Proteoglycans/pharmacology , Signal Transduction , Tumor Microenvironment/genetics , Xenograft Model Antitumor Assays
14.
Oncotarget ; 8(44): 75778-75796, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100268

ABSTRACT

In an ongoing effort to identify molecular determinants regulating melanoma brain metastasis, we previously identified Angiopoietin-like 4 (ANGPTL4) as a component of the molecular signature of such metastases. The aim of this study was to determine the functional significance of ANGPTL4 in the shaping of melanoma malignancy phenotype, especially in the establishment of brain metastasis. We confirmed that ANGPTL4 expression is significantly higher in cells metastasizing to the brain than in cells from the cutaneous (local) tumor from the same melanoma in a nude mouse xenograft model, and also in paired clinical specimens of melanoma metastases than in primary melanomas from the same patients. In vitro experiments indicated that brain-derived soluble factors and transforming growth factor ß1 (TGFß1) up-regulated ANGPTL4 expression by melanoma cells. Forced over-expression of ANGPTL4 in cutaneous melanoma cells promoted their ability to adhere and transmigrate brain endothelial cells. Over-expressing ANGPTL4 in cells derived from brain metastases resulted in the opposite effects. In vivo data indicated that forced overexpression of ANGPTL4 promoted the tumorigenicity of cutaneous melanoma cells but did not increase their ability to form brain metastasis. This finding can be explained by inhibitory activities of brain-derived soluble factors. Taken together these findings indicate that ANGPTL4 promotes the malignancy phenotype of primary melanomas of risk to metastasize to the brain.

15.
Oncotarget ; 8(19): 31079-31091, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28415693

ABSTRACT

We previously identified the chemokine receptor CCR4 as part of the molecular signature of melanoma brain metastasis. The aim of this study was to determine the functional significance of CCR4 in melanoma brain metastasis. We show that CCR4 is more highly expressed by brain metastasizing melanoma cells than by local cutaneous cells from the same melanoma. Moreover, we found that the expression of CCR4 is significantly higher in paired clinical specimens of melanoma metastases than in samples of primary tumors from the same patients. Notably, the expression of the CCR4 ligands, Ccl22 and Ccl17 is upregulated at the earliest stages of brain metastasis, and precedes the infiltration of melanoma cells to the brain. In-vitro, CCL17 induced migration and transendothelial migration of melanoma cells. Functionally, human melanoma cells over-expressing CCR4 were more tumorigenic and produced a higher load of spontaneous brain micrometastasis than control cells. Blocking CCR4 with a small molecule CCR4 antagonist in-vivo, reduced the tumorigenicity and micrometastasis formation of melanoma cells. Taken together, these findings implicate CCR4 as a driver of melanoma brain metastasis.


Subject(s)
Brain Neoplasms/secondary , Melanoma/metabolism , Melanoma/pathology , Receptors, CCR4/metabolism , Animals , Biomarkers , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement , Cell Survival/genetics , Chemokine CCL17/metabolism , Disease Models, Animal , Disease Progression , Gene Expression , Humans , Immunophenotyping , Ligands , Male , Melanoma/drug therapy , Melanoma/genetics , Mice , Phenotype , Receptors, CCR4/antagonists & inhibitors , Receptors, CCR4/genetics , Stromal Cells/metabolism , Tumor Burden , Xenograft Model Antitumor Assays
16.
J Invest Dermatol ; 135(10): 2464-2474, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26016895

ABSTRACT

In recent years, considerable advances have been made in the characterization of protein-coding alterations involved in the pathogenesis of melanoma. However, despite their growing implication in cancer, little is known about the role of long noncoding RNAs in melanoma progression. We hypothesized that copy number alterations (CNAs) of intergenic nonprotein-coding domains could help identify long intergenic noncoding RNAs (lincRNAs) associated with metastatic cutaneous melanoma. Among several candidates, our approach uncovered the chromosome 6p22.3 CASC15 (cancer susceptibility candidate 15) lincRNA locus as a frequently gained genomic segment in metastatic melanoma tumors and cell lines. The locus was actively transcribed in metastatic melanoma cells, and upregulation of CASC15 expression was associated with metastatic progression to brain metastasis in a mouse xenograft model. In clinical specimens, CASC15 levels increased during melanoma progression and were independent predictors of disease recurrence in a cohort of 141 patients with AJCC (American Joint Committee on Cancer) stage III lymph node metastasis. Moreover, small interfering RNA (siRNA) knockdown experiments revealed that CASC15 regulates melanoma cell phenotype switching between proliferative and invasive states. Accordingly, CASC15 levels correlated with known gene signatures corresponding to melanoma proliferative and invasive phenotypes. These findings support a key role for CASC15 in metastatic melanoma.


Subject(s)
Chromosomes, Human, Pair 6/genetics , Gene Expression Regulation, Neoplastic/genetics , Genetic Loci/genetics , Melanoma/genetics , RNA, Long Noncoding/genetics , Skin Neoplasms/genetics , Animals , Biopsy, Needle , Disease Progression , Gene Expression Profiling , Humans , Immunohistochemistry , Melanocytes/pathology , Melanoma/pathology , Mice , Phenotype , Real-Time Polymerase Chain Reaction/methods , Skin Neoplasms/pathology , Tumor Cells, Cultured
17.
Cancer Lett ; 361(1): 86-96, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25725450

ABSTRACT

V600E being the most common mutation in BRAF, leads to constitutive activation of the MAPK signaling pathway. The majority of V600E BRAF positive melanoma patients treated with the BRAF inhibitor vemurafenib showed initial good clinical responses but relapsed due to acquired resistance to the drug. The aim of the present study was to identify possible biomarkers associated with the emergence of drug resistant melanoma cells. To this end we analyzed the differential gene expression of vemurafenib-sensitive and vemurafenib resistant brain and lung metastasizing melanoma cells. The major finding of this study is that the in vitro induction of vemurafenib resistance in melanoma cells is associated with an increased malignancy phenotype of these cells. Resistant cells expressed higher levels of genes coding for cancer stem cell markers (JARID1B, CD271 and Fibronectin) as well as genes involved in drug resistance (ABCG2), cell invasion and promotion of metastasis (MMP-1 and MMP-2). We also showed that drug-resistant melanoma cells adhere better to and transmigrate more efficiently through lung endothelial cells than drug-sensitive cells. The former cells also alter their microenvironment in a different manner from that of drug-sensitive cells. Biomarkers and molecular mechanisms associated with drug resistance may serve as targets for therapy of drug-resistant cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/secondary , Cell Movement/drug effects , Drug Resistance, Neoplasm/drug effects , Indoles/pharmacology , Lung Neoplasms/secondary , Melanoma/pathology , Sulfonamides/pharmacology , Animals , Biomarkers, Tumor/genetics , Blotting, Western , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Proliferation/drug effects , Flow Cytometry , Gene Expression Profiling , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Male , Melanoma/drug therapy , Melanoma/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Tumor Cells, Cultured , Vemurafenib , Xenograft Model Antitumor Assays
18.
J Pathol ; 236(1): 116-27, 2015 May.
Article in English | MEDLINE | ID: mdl-25639230

ABSTRACT

Melanoma is the leading cause of skin cancer mortality. The major cause of melanoma mortality is metastasis to distant organs, frequently to the brain. The microenvironment plays a critical role in tumourigenesis and metastasis. In order to treat or prevent metastasis, the interactions of disseminated tumour cells with the microenvironment at the metastatic organ have to be elucidated. However, the role of brain stromal cells in facilitating metastatic growth is poorly understood. Astrocytes are glial cells that function in repair and scarring of the brain following injury, in part via mediating neuroinflammation, but the role of astrocytes in melanoma brain metastasis is largely unresolved. Here we show that astrocytes can be reprogrammed by human brain-metastasizing melanoma cells to express pro-inflammatory factors, including the cytokine IL-23, which was highly expressed by metastases-associated astrocytes in vivo. Moreover, we show that the interactions between astrocytes and melanoma cells are reciprocal: paracrine signalling from astrocytes up-regulates the secretion of the matrix metalloproteinase MMP2 and enhances the invasiveness of brain-metastasizing melanoma cells. IL-23 was sufficient to increase melanoma cell invasion, and neutralizing antibodies to IL-23 could block this enhanced migration, implying a functional role for astrocyte-derived IL-23 in facilitating the progression of melanoma brain metastasis. Knocking down the expression of MMP2 in melanoma cells resulted in inhibition of IL-23-induced invasiveness. Thus, our study demonstrates that bidirectional signalling between melanoma cells and astrocytes results in the formation of a pro-inflammatory milieu in the brain, and in functional enhancement of the metastatic potential of disseminated melanoma cells.


Subject(s)
Astrocytes/metabolism , Brain Neoplasms/metabolism , Interleukin-23/metabolism , Melanoma/metabolism , Animals , Brain Neoplasms/secondary , Humans , Male , Matrix Metalloproteinase 2/metabolism , Melanoma/secondary , Mice, Nude , Signal Transduction/physiology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Up-Regulation
19.
J Invest Dermatol ; 135(2): 532-541, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25243790

ABSTRACT

BRAF mutations are frequent in cutaneous melanomas, and BRAF inhibitors (BRAFi) have shown remarkable clinical efficacy in BRAF mutant melanoma patients. However, acquired drug resistance can occur rapidly and tumor(s) often progresses thereafter. Various mechanisms of BRAFi resistance have recently been described; however, the mechanism of resistance remains controversial. In this study, we developed BRAFi-resistant melanoma cell lines and found that metastasis-related epithelial to mesenchymal transition properties of BRAFi-resistant cells were enhanced significantly. Upregulation of EGFR was observed in BRAFi-resistant cell lines and patient tumors because of demethylation of EGFR regulatory DNA elements. EGFR induced PI3K/AKT pathway activation in BRAFi-resistant cells through epigenetic regulation. Treatment of EGFR inhibitor was effective in BRAFi-resistant melanoma cell lines. The study demonstrates that EGFR epigenetic activation has important implications in BRAFi resistance in melanoma.


Subject(s)
Epigenesis, Genetic , ErbB Receptors/genetics , Melanoma/drug therapy , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Skin Neoplasms/drug therapy , Cell Line, Tumor , DNA Methylation , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , ErbB Receptors/physiology , Humans , Melanoma/genetics , Melanoma/pathology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Skin Neoplasms/genetics , Skin Neoplasms/pathology
20.
Int J Cancer ; 136(6): 1296-307, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25046141

ABSTRACT

Brain metastases occur frequently in melanoma patients with advanced disease whereby the prognosis is dismal. The underlying mechanisms of melanoma brain metastasis development are not well understood. Identification of molecular determinants regulating melanoma brain metastasis would advance the development of prevention and therapy strategies for this disease. Gene expression profiles of cutaneous and brain-metastasizing melanoma variants from three xenograft tumor models established in our laboratory revealed that expression of tight junction component CLDN1 was lower in the brain-metastasizing variants than in cutaneous variants from the same melanoma. The objective of our study was to determine the significance of CLDN1 downregulation/loss in metastatic melanoma and its role in melanoma brain metastasis. An immunohistochemical analysis of human cells of the melanocyte lineage indicated a significant CLDN1 downregulation in metastatic melanomas. Transduction of melanoma brain metastatic cells expressing low levels of CLDN1 with a CLDN1 retrovirus suppressed their metastatic phenotype. CLDN1-overexpressing melanoma cells expressed a lower ability to migrate and adhere to extracellular matrix, reduced tumor aggressiveness in nude mice and, most importantly, eliminated the formation of micrometastases in the brain. In sharp contrast, the ability of the CLDN1-overexpressing cells to form lung micrometastases was not impaired. CLDN1-mediated interactions between these cells and brain endothelial cells constitute the mechanism underlying these results. Taken together, we demonstrated that downregulation or loss of CLDN1 supports the formation of melanoma brain metastasis, and that CLDN1 expression could be a useful prognostic predictor for melanoma patients with a high risk of brain metastasis.


Subject(s)
Brain Neoplasms/secondary , Claudin-1/physiology , Melanoma/secondary , Skin Neoplasms/pathology , Tumor Microenvironment , Animals , Cell Adhesion , Cell Line, Tumor , Cell Lineage , Cell Movement , Humans , Male , Mice , Mice, Inbred BALB C , Neoplasm Micrometastasis , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...