Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lipids ; 53(6): 601-613, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30152870

ABSTRACT

Recently, a new assay method that can quantify the singlet oxygen-absorption capacity (SOAC) of antioxidants (AO) and food extracts in homogeneous organic solvents has been proposed. In the present study, second-order rate constants (kQ ) for the reaction of singlet oxygen (1 O2 ) with vitamin E homologs (α-, ß-, γ-, and δ-tocopherols [Toc] and α-, ß-, γ-, and δ-tocotrienols [Toc-3]) were measured in an aqueous Triton X-100 (5.0 wt%) micellar solution (pH 7.4). Toc-3 showed kQ values larger than those of Toc in a micellar solution, although Toc and Toc-3 showed the same kQ values in a homogeneous solution. Similar measurements were performed for 5 palm oil extracts 1-5 and one soybean extract 6, which contained different concentrations of Toc, Toc-3, and carotenoids. It has been clarified that the 1 O2 -quenching rates (kQ ) (that is, the relative SOAC value) obtained for extracts 3-6 may be explained as the sum of the product ΣkQAO-iAO-i/100 of the rate constant ( kQAO-i ) and the concentration ([AO-i]/100) of AO-i contained. The UV-vis absorption spectra of Toc and Toc-3 were measured in a micellar solution and chloroform. The results obtained demonstrated that the kQ values of AO in homogeneous and heterogeneous solutions vary notably depending on (1) polarity (dielectric constant [ε]) of the reaction field between 1 O2 and AO, (2) the local concentration of AO, and (3) the mobility of AO in solution. The results suggest that the SOAC method is applicable to the measurement of 1 O2 -quenching activity of general food extracts in a heterogeneous micellar solution.


Subject(s)
Glycine max/chemistry , Micelles , Palm Oil/chemistry , Plant Extracts/chemistry , Singlet Oxygen/analysis , Singlet Oxygen/chemistry , Vitamin E/chemistry , Molecular Structure , Solutions
2.
J Oleo Sci ; 66(6): 607-614, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28515377

ABSTRACT

Phospholipid peroxidation is considered to be involved in the pathophysiology of various diseases. While dietary antioxidants are believed to help prevent these diseases via inhibition of phospholipid peroxidation, further evaluation is needed to prove this hypothesis. For this, it is crucial to establish an animal model with accelerated phospholipid peroxidation. In this study, we hypothesized that a combination of aging and high-fat diet feeding may accelerate phospholipid peroxidation in vivo. High-fat diets were fed to mature and juvenile Fischer 344 rats for 12 weeks. The mature rats in particular accumulated body fat and liver phosphatidylcholine hydroperoxide (PCOOH). Interestingly, the increase in PCOOH levels was abrogated by the co-administration of antioxidants to mature rats. This may be attributed to factors including the decrease in body fat, functions of vitamin E, and/or the involvement of antioxidant-related genes, each caused by antioxidant administration. These results indicate that the high-fat diet-fed aging animal model may be suitable for investigation of the relationship between phospholipid peroxidation, oxidative stress-related diseases, and dietary antioxidants.


Subject(s)
Diet, High-Fat/adverse effects , Lipid Peroxidation , Liver/metabolism , Phospholipids/metabolism , Adipose Tissue/metabolism , Aging/metabolism , Animals , Antioxidants/pharmacology , Male , Models, Animal , Oxidative Stress , Phosphatidylcholines/metabolism , Rats, Inbred F344 , Vitamin E/pharmacology
3.
Biosci Biotechnol Biochem ; 78(12): 2089-101, 2014.
Article in English | MEDLINE | ID: mdl-25093256

ABSTRACT

Measurements of the singlet oxygen ((1)O2) quenching rates (kQ (S)) and the relative singlet oxygen absorption capacity (SOAC) values were performed for 11 antioxidants (AOs) (eight vitamin E homologues (α-, ß-, γ-, and δ-tocopherols and -tocotrienols (-Tocs and -Toc-3s)), two vitamin E metabolites (α- and γ-carboxyethyl-6-hydroxychroman), and trolox) in ethanol/chloroform/D2O (50:50:1, v/v/v) and ethanol solutions at 35 °C. Similar measurements were performed for five palm oil extracts 1-5 and one soybean extract 6, which included different concentrations of Tocs, Toc-3s, and carotenoids. Furthermore, the concentrations (wt%) of Tocs, Toc-3s, and carotenoids included in extracts 1-6 were determined. From the results, it has been clarified that the (1)O2-quenching rates (kQ (S)) (that is, the relative SOAC value) obtained for extracts 1-6 may be explained as the sum of the product {Σ kQ(AO-i) (S) [AO-i]/100} of the rate constant (kQ(AO-i) (S)) and the concentration ([AO-i]/100) of AO-i (Tocs, Toc-3s, and carotenoid) included.


Subject(s)
Chromans/chemistry , Glycine max/chemistry , Plant Oils/chemistry , Singlet Oxygen/chemistry , Tocotrienols/chemistry , Vitamin E/analogs & derivatives , Carotenoids/chemistry , Free Radical Scavengers/chemistry , Kinetics , Palm Oil , Plant Extracts/chemistry , Solutions , Tocopherols/chemistry , Vitamin E/chemistry
4.
J Agric Food Chem ; 62(32): 8101-13, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25052002

ABSTRACT

Measurements of aroxyl radical (ArO•)-scavenging rate constants (k(s)(AOH)) of antioxidants (AOHs) [α-, ß-, γ-, and δ-tocopherols (TocHs) and -tocotrienols (Toc-3Hs)] were performed in ethanol solution via stopped-flow spectrophotometry. k(s)(AOH) values of α-, ß-, γ-, and δ-Toc-3Hs showed good agreement with those of the corresponding α-, ß-, γ-, and δ- TocHs. k(s)(AOH) values were measured not only for each antioxidant but also for mixtures of two antioxidants: (i) α-TocH with ß-, γ-, or δ-TocH and (ii) α-TocH with α-, ß-, γ-, or δ-Toc-3H. A synergistic effect in which the k(s)(AOH) value increases by 12% for γ-TocH (or by 12% for γ-Toc-3H) was observed for solutions including α-TocH and γ-TocH (or γ-Toc-3H). On the other hand, a cancel effect in which the k(s)(AOH) value decreases (a) by 7% for ß-TocH (or 11% for ß-Toc-3H) and (b) by 24% for δ-TocH (or 25% for δ-Toc-3H) was observed for solutions including two kinds of antioxidants. However, only a synergistic effect may function in edible oils, because contents of ß- and δ-TocHs (and ß- and δ-Toc-3Hs) are much less than those of α- and γ-TocHs (and α- and γ-Toc-3Hs) in many edible oils. UV-vis absorption of α-Toc•, which was produced by reaction of α-TocH with ArO•, decreased remarkably for coexistence of α-TocH with ß-, γ-, or δ-TocH (or ß-, γ-, or δ-Toc-3H), indicating that the prooxidant effect of α-Toc• is suppressed by the coexistence of other TocHs and Toc-3Hs.


Subject(s)
Antioxidants/pharmacology , Free Radical Scavengers/pharmacology , Tocopherols/pharmacology , Tocotrienols/pharmacology , Antioxidants/chemistry , Drug Antagonism , Drug Synergism , Ethanol/chemistry , Free Radical Scavengers/chemistry , Kinetics , Osmolar Concentration , Oxidants/agonists , Oxidants/antagonists & inhibitors , Oxidants/pharmacology , Reactive Oxygen Species/antagonists & inhibitors , Solvents/chemistry , Spectrophotometry , Stereoisomerism , Tocopherols/agonists , Tocopherols/antagonists & inhibitors , Tocotrienols/agonists , Tocotrienols/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...