Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Comput Struct Biotechnol J ; 21: 4613-4618, 2023.
Article in English | MEDLINE | ID: mdl-37817776

ABSTRACT

In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data.

2.
iScience ; 26(1): 105907, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36647378

ABSTRACT

The conquest of the Canary Islands by Europeans began at the beginning of the 15th century and culminated in 1496 with the surrender of the aborigines. The collapse of the aboriginal population during the conquest and the arrival of settlers caused a drastic change in the demographic composition of the archipelago. To shed light on this historical process, we analyzed 896 mitogenomes of current inhabitants from the seven main islands. Our findings confirm the continuity of aboriginal maternal contributions and the persistence of their genetic footprints in the current population, even at higher levels (>60% on average) than previously evidenced. Moreover, the age estimates for most autochthonous founder lineages support a first aboriginal arrival to the islands at the beginning of the first millennium. We also revealed for the first time that the main recognizable genetic influences from Europe are from Portuguese and Galicians.

3.
Life (Basel) ; 12(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36431075

ABSTRACT

Next-generation sequencing (NGS) applications have flourished in the last decade, permitting the identification of cancer driver genes and profoundly expanding the possibilities of genomic studies of cancer, including melanoma. Here we aimed to present a technical review across many of the methodological approaches brought by the use of NGS applications with a focus on assessing germline and somatic sequence variation. We provide cautionary notes and discuss key technical details involved in library preparation, the most common problems with the samples, and guidance to circumvent them. We also provide an overview of the sequence-based methods for cancer genomics, exposing the pros and cons of targeted sequencing vs. exome or whole-genome sequencing (WGS), the fundamentals of the most common commercial platforms, and a comparison of throughputs and key applications. Details of the steps and the main software involved in the bioinformatics processing of the sequencing results, from preprocessing to variant prioritization and filtering, are also provided in the context of the full spectrum of genetic variation (SNVs, indels, CNVs, structural variation, and gene fusions). Finally, we put the emphasis on selected bioinformatic pipelines behind (a) short-read WGS identification of small germline and somatic variants, (b) detection of gene fusions from transcriptomes, and (c) de novo assembly of genomes from long-read WGS data. Overall, we provide comprehensive guidance across the main methodological procedures involved in obtaining sequencing results for the most common short- and long-read NGS platforms, highlighting key applications in melanoma research.

4.
Sci Rep ; 12(1): 16132, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36168029

ABSTRACT

The current inhabitants of the Canary Islands have a unique genetic makeup in the European diversity landscape due to the existence of African footprints from recent admixture events, especially of North African components (> 20%). The underrepresentation of non-Europeans in genetic studies and the sizable North African ancestry, which is nearly absent from all existing catalogs of worldwide genetic diversity, justify the need to develop CIRdb, a population-specific reference catalog of natural genetic variation in the Canary Islanders. Based on array genotyping of the selected unrelated donors and comparisons against available datasets from European, sub-Saharan, and North African populations, we illustrate the intermediate genetic differentiation of Canary Islanders between Europeans and North Africans and the existence of within-population differences that are likely driven by genetic isolation. Here we describe the overall design and the methods that are being implemented to further develop CIRdb. This resource will help to strengthen the implementation of Precision Medicine in this population by contributing to increase the diversity in genetic studies. Among others, this will translate into improved ability to fine map disease genes and simplify the identification of causal variants and estimate the prevalence of unattended Mendelian diseases.


Subject(s)
Black People , Genetic Variation , Africa, Northern , Genetics, Population , Humans , Spain
5.
Hum Mutat ; 43(12): 2010-2020, 2022 12.
Article in English | MEDLINE | ID: mdl-36054330

ABSTRACT

Most causal variants of Mendelian diseases are exonic. Whole-exome sequencing (WES) has become the diagnostic gold standard, but causative variant prioritization constitutes a bottleneck. Here we assessed an in-house sample-to-sequence pipeline and benchmarked free prioritization tools for germline causal variants from WES data. WES of 61 unselected patients with a known genetic disease cause was obtained. Variant prioritizations were performed by diverse tools and recorded to obtain a diagnostic yield when the causal variant was present in the first, fifth, and 10th top rankings. A fraction of causal variants was not captured by WES (8.2%) or did not pass the quality control criteria (13.1%). Most of the applications inspected were unavailable or had technical limitations, leaving nine tools for complete evaluation. Exomiser performed best in the top first rankings, while LIRICAL led in the top fifth rankings. Based on the more conservative top 10th rankings, Xrare had the highest diagnostic yield, followed by a three-way tie among Exomiser, LIRICAL, and PhenIX, then followed by AMELIE, TAPES, Phen-Gen,  AIVar, and VarNote-PAT. Xrare, Exomiser, LIRICAL, and PhenIX are the most efficient options for variant prioritization in real patient WES data.


Subject(s)
Exome , Germ-Line Mutation , Humans , Exome Sequencing , Exome/genetics
6.
Cell Genom ; 2(5)2022 May 11.
Article in English | MEDLINE | ID: mdl-35720974

ABSTRACT

The precisionFDA Truth Challenge V2 aimed to assess the state of the art of variant calling in challenging genomic regions. Starting with FASTQs, 20 challenge participants applied their variant-calling pipelines and submitted 64 variant call sets for one or more sequencing technologies (Illumina, PacBio HiFi, and Oxford Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small variants with updated Genome in a Bottle benchmark sets and genome stratifications. Challenge submissions included numerous innovative methods, with graph-based and machine learning methods scoring best for short-read and long-read datasets, respectively. With machine learning approaches, combining multiple sequencing technologies performed particularly well. Recent developments in sequencing and variant calling have enabled benchmarking variants in challenging genomic regions, paving the way for the identification of previously unknown clinically relevant variants.

7.
Nat Biotechnol ; 40(5): 672-680, 2022 05.
Article in English | MEDLINE | ID: mdl-35132260

ABSTRACT

The repetitive nature and complexity of some medically relevant genes poses a challenge for their accurate analysis in a clinical setting. The Genome in a Bottle Consortium has provided variant benchmark sets, but these exclude nearly 400 medically relevant genes due to their repetitiveness or polymorphic complexity. Here, we characterize 273 of these 395 challenging autosomal genes using a haplotype-resolved whole-genome assembly. This curated benchmark reports over 17,000 single-nucleotide variations, 3,600 insertions and deletions and 200 structural variations each for human genome reference GRCh37 and GRCh38 across HG002. We show that false duplications in either GRCh37 or GRCh38 result in reference-specific, missed variants for short- and long-read technologies in medically relevant genes, including CBS, CRYAA and KCNE1. When masking these false duplications, variant recall can improve from 8% to 100%. Forming benchmarks from a haplotype-resolved whole-genome assembly may become a prototype for future benchmarks covering the whole genome.


Subject(s)
Genome, Human , Genome, Human/genetics , Haplotypes/genetics , Humans , Sequence Analysis, DNA
8.
Sci Rep ; 11(1): 20510, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654896

ABSTRACT

The mitochondrial genome (mtDNA) is of interest for a range of fields including evolutionary, forensic, and medical genetics. Human mitogenomes can be classified into evolutionary related haplogroups that provide ancestral information and pedigree relationships. Because of this and the advent of high-throughput sequencing (HTS) technology, there is a diversity of bioinformatic tools for haplogroup classification. We present a benchmarking of the 11 most salient tools for human mtDNA classification using empirical whole-genome (WGS) and whole-exome (WES) short-read sequencing data from 36 unrelated donors. We also assessed the best performing tool in third-generation long noisy read WGS data obtained with nanopore technology for a subset of the donors. We found that, for short-read WGS, most of the tools exhibit high accuracy for haplogroup classification irrespective of the input file used for the analysis. However, for short-read WES, Haplocheck and MixEmt were the most accurate tools. Based on the performance shown for WGS and WES, and the accompanying qualitative assessment, Haplocheck stands out as the most complete tool. For third-generation HTS data, we also showed that Haplocheck was able to accurately retrieve mtDNA haplogroups for all samples assessed, although only after following assembly-based approaches (either based on a referenced-based assembly or a hybrid de novo assembly). Taken together, our results provide guidance for researchers to select the most suitable tool to conduct the mtDNA analyses from HTS data.


Subject(s)
Computational Biology/methods , DNA, Mitochondrial/classification , Benchmarking , Genome, Mitochondrial , Haplotypes , Humans , Whole Genome Sequencing
9.
Nucleic Acids Res ; 47(W1): W530-W535, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31114926

ABSTRACT

Since the original publication of sRNAtoolbox in 2015, small RNA research experienced notable advances in different directions. New protocols for small RNA sequencing have become available to address important issues such as adapter ligation bias, PCR amplification artefacts or to include internal controls such as spike-in sequences. New microRNA reference databases were developed with different foci, either prioritizing accuracy (low number of false positives) or completeness (low number of false negatives). Additionally, other small RNA molecules as well as microRNA sequence and length variants (isomiRs) have continued to gain importance. Finally, the number of microRNA sequencing studies deposited in GEO nearly triplicated from 2014 (280) to 2018 (764). These developments imply that fast and easy-to-use tools for expression profiling and subsequent downstream analysis of miRNA-seq data are essential to many researchers. Key features in this sRNAtoolbox release include addition of all major RNA library preparation protocols to sRNAbench and improvements in sRNAde, a tool that summarizes several aspects of small RNA sequencing studies including the detection of consensus differential expression. A special emphasis was put on the user-friendliness of the tools, for instance sRNAbench now supports parallel launching of several jobs to improve reproducibility and user time efficiency.


Subject(s)
MicroRNAs/chemistry , MicroRNAs/metabolism , Software , Gene Expression Profiling , Genetic Variation , Sequence Analysis, RNA
10.
Nucleic Acids Res ; 47(D1): D113-D120, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30357370

ABSTRACT

MiRNAs are important regulators of gene expression and are frequently deregulated under pathologic conditions. They are highly stable in bodily fluids which makes them feasible candidates to become minimally invasive biomarkers. In fact, several studies already proposed circulating miRNA-based biomarkers for different types of neoplastic, cardiovascular and degenerative diseases. However, many of these studies rely on small RNA sequencing experiments that are based on different RNA extraction and processing protocols, rendering results incomparable. We generated liqDB, a database for liquid biopsy small RNA sequencing profiles that provides users with meaningful information to guide their small RNA liquid biopsy research and to overcome technical and conceptual problems. By means of a user-friendly web interface, miRNA expression profiles from 1607 manually annotated samples can be queried and explored at different levels. Result pages include downloadable expression matrices, differential expression analysis, most stably expressed miRNAs, cluster analysis and relevant visualizations by means of boxplots and heatmaps. We anticipate that liqDB will be a useful tool in liquid biopsy research as it provides a consistently annotated large compilation of experiments together with tools for reproducible analysis, comparison and hypothesis generation. LiqDB is available at http://bioinfo5.ugr.es/liqdb.


Subject(s)
Cell-Free Nucleic Acids , Computational Biology/methods , Databases, Genetic , RNA, Small Untranslated , Algorithms , Gene Expression Profiling/methods , Liquid Biopsy/methods , Software , Software Design , User-Computer Interface , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...