Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Neurology ; 102(7): e209173, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38471056

ABSTRACT

BACKGROUND AND OBJECTIVES: The association between statin use and the risk of intracranial hemorrhage (ICrH) following ischemic stroke (IS) or transient ischemic attack (TIA) in patients with cerebral microbleeds (CMBs) remains uncertain. This study investigated the risk of recurrent IS and ICrH in patients receiving statins based on the presence of CMBs. METHODS: We conducted a pooled analysis of individual patient data from the Microbleeds International Collaborative Network, comprising 32 hospital-based prospective studies fulfilling the following criteria: adult patients with IS or TIA, availability of appropriate baseline MRI for CMB quantification and distribution, registration of statin use after the index stroke, and collection of stroke event data during a follow-up period of ≥3 months. The primary endpoint was the occurrence of recurrent symptomatic stroke (IS or ICrH), while secondary endpoints included IS alone or ICrH alone. We calculated incidence rates and performed Cox regression analyses adjusting for age, sex, hypertension, atrial fibrillation, previous stroke, and use of antiplatelet or anticoagulant drugs to explore the association between statin use and stroke events during follow-up in patients with CMBs. RESULTS: In total, 16,373 patients were included (mean age 70.5 ± 12.8 years; 42.5% female). Among them, 10,812 received statins at discharge, and 4,668 had 1 or more CMBs. The median follow-up duration was 1.34 years (interquartile range: 0.32-2.44). In patients with CMBs, statin users were compared with nonusers. Compared with nonusers, statin therapy was associated with a reduced risk of any stroke (incidence rate [IR] 53 vs 79 per 1,000 patient-years, adjusted hazard ratio [aHR] 0.68 [95% CI 0.56-0.84]), a reduced risk of IS (IR 39 vs 65 per 1,000 patient-years, aHR 0.65 [95% CI 0.51-0.82]), and no association with the risk of ICrH (IR 11 vs 16 per 1,000 patient-years, aHR 0.73 [95% CI 0.46-1.15]). The results in aHR remained consistent when considering anatomical distribution and high burden (≥5) of CMBs. DISCUSSION: These observational data suggest that secondary stroke prevention with statins in patients with IS or TIA and CMBs is associated with a lower risk of any stroke or IS without an increased risk of ICrH. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that for patients with IS or TIA and CMBs, statins lower the risk of any stroke or IS without increasing the risk of ICrH.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Ischemic Attack, Transient , Ischemic Stroke , Stroke , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Cerebral Hemorrhage/epidemiology , Cerebral Infarction/complications , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Intracranial Hemorrhages/complications , Ischemic Attack, Transient/epidemiology , Ischemic Stroke/complications , Magnetic Resonance Imaging , Neoplasm Recurrence, Local/complications , Prospective Studies , Risk Factors , Secondary Prevention , Stroke/epidemiology
2.
Neurology ; 102(1): e207977, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38165372

ABSTRACT

BACKGROUND AND OBJECTIVES: Cerebral small vessel disease (SVD) is the major cause of intracerebral hemorrhage (ICH). There is no comprehensive, easily applicable classification of ICH subtypes according to the presumed underlying SVD using MRI. We developed an MRI-based classification for SVD-related ICH. METHODS: We performed a retrospective study in the prospectively collected Swiss Stroke Registry (SSR, 2013-2019) and the Stroke InvestiGation in North And central London (SIGNAL) cohort. Patients with nontraumatic, SVD-related ICH and available MRI within 3 months were classified as Cerebral Amyloid angiopathy (CAA), Deep perforator arteriopathy (DPA), Mixed CAA-DPA, or Undetermined SVD using hemorrhagic and nonhemorrhagic MRI markers (CADMUS classification). The primary outcome was inter-rater reliability using Gwet's AC1. Secondary outcomes were recurrent ICH/ischemic stroke at 3 months according to the CADMUS phenotype. We performed Firth penalized logistic regressions and competing risk analyses. RESULTS: The SSR cohort included 1,180 patients (median age [interquartile range] 73 [62-80] years, baseline NIH Stroke Scale 6 [2-12], 45.6% lobar hematoma, systolic blood pressure on admission 166 [145-185] mm Hg). The CADMUS phenotypes were as follows: mixed CAA-DPA (n = 751 patients, 63.6%), undetermined SVD (n = 203, 17.2%), CAA (n = 154, 13.1%), and DPA (n = 72, 6.3%), with a similar distribution in the SIGNAL cohort (n = 313). Inter-rater reliability was good (Gwet's AC1 for SSR/SIGNAL 0.69/0.74). During follow-up, 56 patients had 57 events (28 ICH, 29 ischemic strokes). Three-month event rates were comparable between the CADMUS phenotypes. DISCUSSION: CADMUS, a novel MRI-based classification for SVD-associated ICH, is feasible and reproducible and may improve the classification of ICH subtypes in clinical practice and research.


Subject(s)
Cerebral Amyloid Angiopathy , Stroke , Humans , Aged , Reproducibility of Results , Retrospective Studies , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Stroke/diagnostic imaging , Stroke/epidemiology , Cerebral Amyloid Angiopathy/diagnostic imaging
3.
Neurology ; 102(1): e207795, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38165371

ABSTRACT

BACKGROUND AND OBJECTIVES: Visible perivascular spaces are an MRI marker of cerebral small vessel disease and might predict future stroke. However, results from existing studies vary. We aimed to clarify this through a large collaborative multicenter analysis. METHODS: We pooled individual patient data from a consortium of prospective cohort studies. Participants had recent ischemic stroke or transient ischemic attack (TIA), underwent baseline MRI, and were followed up for ischemic stroke and symptomatic intracranial hemorrhage (ICH). Perivascular spaces in the basal ganglia (BGPVS) and perivascular spaces in the centrum semiovale (CSOPVS) were rated locally using a validated visual scale. We investigated clinical and radiologic associations cross-sectionally using multinomial logistic regression and prospective associations with ischemic stroke and ICH using Cox regression. RESULTS: We included 7,778 participants (mean age 70.6 years; 42.7% female) from 16 studies, followed up for a median of 1.44 years. Eighty ICH and 424 ischemic strokes occurred. BGPVS were associated with increasing age, hypertension, previous ischemic stroke, previous ICH, lacunes, cerebral microbleeds, and white matter hyperintensities. CSOPVS showed consistently weaker associations. Prospectively, after adjusting for potential confounders including cerebral microbleeds, increasing BGPVS burden was independently associated with future ischemic stroke (versus 0-10 BGPVS, 11-20 BGPVS: HR 1.19, 95% CI 0.93-1.53; 21+ BGPVS: HR 1.50, 95% CI 1.10-2.06; p = 0.040). Higher BGPVS burden was associated with increased ICH risk in univariable analysis, but not in adjusted analyses. CSOPVS were not significantly associated with either outcome. DISCUSSION: In patients with ischemic stroke or TIA, increasing BGPVS burden is associated with more severe cerebral small vessel disease and higher ischemic stroke risk. Neither BGPVS nor CSOPVS were independently associated with future ICH.


Subject(s)
Cerebral Small Vessel Diseases , Ischemic Attack, Transient , Ischemic Stroke , Stroke , Humans , Female , Aged , Male , Prognosis , Ischemic Attack, Transient/complications , Ischemic Attack, Transient/diagnostic imaging , Prospective Studies , Intracranial Hemorrhages , Stroke/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Magnetic Resonance Imaging , Cerebral Hemorrhage
5.
Clin Infect Dis ; 78(2): 457-460, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37897407

ABSTRACT

Cerebral malaria is an important cause of mortality and neurodisability in endemic regions. We show magnetic resonance imaging (MRI) features suggestive of cytotoxic and vasogenic cerebral edema followed by microhemorrhages in 2 adult UK cases, comparing them with an Indian cohort. Long-term follow-up images correlate ongoing changes with residual functional impairment.


Subject(s)
Brain Edema , Malaria, Cerebral , Adult , Humans , Malaria, Cerebral/diagnostic imaging , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Imaging/methods , Brain Edema/etiology , Brain Edema/pathology
6.
Med Image Anal ; 90: 102967, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778102

ABSTRACT

Any clinically-deployed image-processing pipeline must be robust to the full range of inputs it may be presented with. One popular approach to this challenge is to develop predictive models that can provide a measure of their uncertainty. Another approach is to use generative modelling to quantify the likelihood of inputs. Inputs with a low enough likelihood are deemed to be out-of-distribution and are not presented to the downstream predictive model. In this work, we evaluate several approaches to segmentation with uncertainty for the task of segmenting bleeds in 3D CT of the head. We show that these models can fail catastrophically when operating in the far out-of-distribution domain, often providing predictions that are both highly confident and wrong. We propose to instead perform out-of-distribution detection using the Latent Transformer Model: a VQ-GAN is used to provide a highly compressed latent representation of the input volume, and a transformer is then used to estimate the likelihood of this compressed representation of the input. We demonstrate this approach can identify images that are both far- and near- out-of-distribution, as well as provide spatial maps that highlight the regions considered to be out-of-distribution. Furthermore, we find a strong relationship between an image's likelihood and the quality of a model's segmentation on it, demonstrating that this approach is viable for filtering out unsuitable images.


Subject(s)
Image Processing, Computer-Assisted , Humans , Probability , Uncertainty
7.
Radiology ; 308(3): e230173, 2023 09.
Article in English | MEDLINE | ID: mdl-37724973

ABSTRACT

Alzheimer disease (AD) is the most common cause of dementia. The prevailing theory of the underlying pathology assumes amyloid accumulation followed by tau protein aggregation and neurodegeneration. However, the current antiamyloid and antitau treatments show only variable clinical efficacy. Three relevant points are important for the radiologic assessment of dementia. First, besides various dementing disorders (including AD, frontotemporal dementia, and dementia with Lewy bodies), clinical variants and imaging subtypes of AD include both typical and atypical AD. Second, atypical AD has overlapping radiologic and clinical findings with other disorders. Third, the diagnostic process should consider mixed pathologies in neurodegeneration, especially concurrent cerebrovascular disease, which is frequent in older age. Neuronal loss is often present at, or even before, the onset of cognitive decline. Thus, for effective emerging treatments, early diagnosis before the onset of clinical symptoms is essential to slow down or stop subsequent neuronal loss, requiring molecular imaging or plasma biomarkers. Neuroimaging, particularly MRI, provides multiple imaging parameters for neurodegenerative and cerebrovascular disease. With emerging treatments for AD, it is increasingly important to recognize AD variants and other disorders that mimic AD. Describing the individual composition of neurodegenerative and cerebrovascular disease markers while considering overlapping and mixed diseases is necessary to better understand AD and develop efficient individualized therapies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Radiology , Humans , Alzheimer Disease/diagnostic imaging , Neuroimaging , Molecular Imaging
8.
J Neurol Sci ; 452: 120743, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37531792

ABSTRACT

BACKGROUND: Intracerebral haemorrhage (ICH) is a severe clinical consequence of cerebral small vessel disease (SVD), but associations between renal impairment and SVD in patients with ICH have not been fully characterised. METHODS: Using data from the CROMIS-2 ICH observational study, we compared SVD neuroimaging markers and total burden (score 0-3) identified using CT brain imaging in patients with and without renal impairment (estimated glomerular filtration rate, eGFR<60). We assessed functional outcome at 6-month follow-up using the modified Rankin scale. RESULTS: 1027 participants were included (mean age 72.8, 57.1% male); 274 with and 753 without renal impairment. 18.7% of the eGFR<60 group had moderate-to-severe SVD burden (score 2-3), compared with 14.0% of those with eGFR>60 (p = 0.039). SVD burden was associated with renal impairment after adjusting for hypertension (OR 1.36, 95% CI 1.04-1.77, p = 0.023), but not after adjusting for age. Cerebral atrophy was more prevalent in patients with eGFR<60 (81.2% vs. 72.0%, p = 0.002), as were WMH (45.6% vs. 36.6%, p = 0.026). Neither was associated with renal function after adjusting for age and vascular risk factors. Renal impairment was associated with functional outcome (OR 0.65, 95% CI 0.47-0.89, p = 0.007), but not after adjusting for age, pre-morbid function and comorbidities (OR 0.95, 95% CI 0.65-1.38, p = 0.774). CONCLUSION: In acute ICH, renal impairment is associated with a higher cerebral SVD burden independent of hypertension, but not age. Reduced eGFR is associated with worse functional outcome, but not independent of age and comorbidities. Since CT has limited sensitivity to detect SVD severity and distribution, further studies including MRI are needed.


Subject(s)
Cerebral Small Vessel Diseases , Hypertension , Humans , Male , Female , Prospective Studies , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Magnetic Resonance Imaging , Hypertension/complications , Kidney/diagnostic imaging , Kidney/physiology
9.
Radiol Clin North Am ; 61(3): 501-519, 2023 May.
Article in English | MEDLINE | ID: mdl-36931766

ABSTRACT

Cerebral venous thrombosis (CVT) is a rare cerebrovascular disease caused by an occlusion of the cerebral venous sinuses or cortical veins. It has a favorable prognosis if diagnosed and treated early. CVT can be difficult to diagnose on clinical grounds, and imaging plays a key role. We discuss clinical features and provide an overview of current neuroimaging methods and findings in CTV.


Subject(s)
Magnetic Resonance Angiography , Sinus Thrombosis, Intracranial , Humans , Prognosis , Sinus Thrombosis, Intracranial/diagnostic imaging
10.
J Pers Med ; 13(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36836456

ABSTRACT

INTRODUCTION: Gliomatosis cerebri describes a rare growth pattern of diffusely infiltrating glioma. The treatment options are limited and clinical outcomes remain poor. To characterise this population of patients, we examined referrals to a specialist brain tumour centre. METHODS: We analysed demographic data, presenting symptoms, imaging, histology and genetics, and survival in individuals referred to a multidisciplinary team meeting over a 10-year period. RESULTS: In total, 29 patients fulfilled the inclusion criteria with a median age of 64 years. The most common presenting symptoms were neuropsychiatric (31%), seizure (24%) or headache (21%). Of 20 patients with molecular data, 15 had IDH wild-type glioblastoma, with an IDH1 mutation most common in the remainder (5/20). The median length of survival from MDT referral to death was 48 weeks (IQR 23 to 70 weeks). Contrast enhancement patterns varied between and within tumours. In eight patients who had DSC perfusion studies, five (63%) had a measurable region of increased tumour perfusion with rCBV values ranging from 2.8 to 5.7. A minority of patients underwent MR spectroscopy with 2/3 (66.6%) false-negative results. CONCLUSIONS: Gliomatosis imaging, histological and genetic findings are heterogeneous. Advanced imaging, including MR perfusion, could identify biopsy targets. Negative MR spectroscopy does not exclude the diagnosis of glioma.

11.
J Neuroradiol ; 50(5): 470-481, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36657613

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral hypoperfusion has been reported in patients with COVID-19 and neurological manifestations in small cohorts. We aimed to systematically assess changes in cerebral perfusion in a cohort of 59 of these patients, with or without abnormalities on morphological MRI sequences. METHODS: Patients with biologically-confirmed COVID-19 and neurological manifestations undergoing a brain MRI with technically adequate arterial spin labeling (ASL) perfusion were included in this retrospective multicenter study. ASL maps were jointly reviewed by two readers blinded to clinical data. They assessed abnormal perfusion in four regions of interest in each brain hemisphere: frontal lobe, parietal lobe, posterior temporal lobe, and temporal pole extended to the amygdalo-hippocampal complex. RESULTS: Fifty-nine patients (44 men (75%), mean age 61.2 years) were included. Most patients had a severe COVID-19, 57 (97%) needed oxygen therapy and 43 (73%) were hospitalized in intensive care unit at the time of MRI. Morphological brain MRI was abnormal in 44 (75%) patients. ASL perfusion was abnormal in 53 (90%) patients, and particularly in all patients with normal morphological MRI. Hypoperfusion occurred in 48 (81%) patients, mostly in temporal poles (52 (44%)) and frontal lobes (40 (34%)). Hyperperfusion occurred in 9 (15%) patients and was closely associated with post-contrast FLAIR leptomeningeal enhancement (100% [66.4%-100%] of hyperperfusion with enhancement versus 28.6% [16.6%-43.2%] without, p = 0.002). Studied clinical parameters (especially sedation) and other morphological MRI anomalies had no significant impact on perfusion anomalies. CONCLUSION: Brain ASL perfusion showed hypoperfusion in more than 80% of patients with severe COVID-19, with or without visible lesion on conventional MRI abnormalities.


Subject(s)
COVID-19 , Male , Humans , Middle Aged , Spin Labels , COVID-19/complications , Magnetic Resonance Imaging , Perfusion , Cerebrovascular Circulation
12.
Ann Neurol ; 93(1): 16-28, 2023 01.
Article in English | MEDLINE | ID: mdl-36197294

ABSTRACT

OBJECTIVE: Determining the underlying causes of intracerebral hemorrhage (ICH) is of major importance, because risk factors, prognosis, and management differ by ICH subtype. We developed a new causal CLASsification system for ICH Subtypes, termed CLAS-ICH, based on recent advances in neuroimaging. METHODS: CLAS-ICH defines 5 ICH subtypes: arteriolosclerosis, cerebral amyloid angiopathy, mixed small vessel disease (SVD), other rare forms of SVD (genetic SVD and others), and secondary causes (macrovascular causes, tumor, and other rare causes). Every patient is scored in each category according to the level of diagnostic evidence: (1) well-defined ICH subtype; (2) possible underlying disease; and (0) no evidence of the disease. We evaluated CLAS-ICH in a derivation cohort of 113 patients with ICH from Massachusetts General Hospital, Boston, USA, and in a derivation cohort of 203 patients from Inselspital, Bern, Switzerland. RESULTS: In the derivation cohort, a well-defined ICH subtype could be identified in 74 (65.5%) patients, including 24 (21.2%) with arteriolosclerosis, 23 (20.4%) with cerebral amyloid angiopathy, 18 (15.9%) with mixed SVD, and 9 (8.0%) with a secondary cause. One or more possible causes were identified in 42 (37.2%) patients. Interobserver agreement was excellent for each category (kappa value ranging from 0.86 to 1.00). Despite substantial differences in imaging modalities, we obtained similar results in the validation cohort. INTERPRETATION: CLAS-ICH is a simple and reliable classification system for ICH subtyping, that captures overlap between causes and the level of diagnostic evidence. CLAS-ICH may guide clinicians to identify ICH causes, and improve ICH classification in multicenter studies. ANN NEUROL 2023;93:16-28.


Subject(s)
Arteriolosclerosis , Cerebral Amyloid Angiopathy , Humans , Arteriolosclerosis/complications , Cerebral Hemorrhage/complications , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Risk Factors , Neuroimaging , Magnetic Resonance Imaging
13.
Neurology ; 99(12): e1290-e1298, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36123141

ABSTRACT

BACKGROUND AND OBJECTIVE: We investigated the associations between the APOE genotype, intracerebral hemorrhage (ICH), and neuroimaging markers of cerebral amyloid angiopathy (CAA). METHODS: We included patients from a prospective, multicenter UK observational cohort study of patients with ICH and representative UK population controls. First, we assessed the association of the APOE genotype with ICH (compared with controls without ICH). Second, among patients with ICH, we assessed the association of APOE status with the hematoma location (lobar or deep) and brain CT markers of CAA (finger-like projections [FLP] and subarachnoid extension [SAE]). RESULTS: We included 907 patients with ICH and 2,636 controls. The mean age was 73.2 (12.4 SD) years for ICH cases vs 69.6 (0.2 SD) for population controls; 50.3% of cases and 42.1% of controls were female. Compared with controls, any APOE ε2 allele was associated with all ICH (lobar and nonlobar) and lobar ICH on its own in the dominant model (OR 1.38, 95% CI 1.13-1.7, p = 0.002 and OR 1.50, 95% CI 1.1-2.04, p = 0.01, respectively) but not deep ICH in an age-adjusted analyses (OR 1.26, 95% CI 0.97-1.63, p = 0.08). In the cases-only analysis, the APOE ε4 allele was associated with lobar compared with deep ICH in an age-adjusted analyses (OR 1.56, 95% CI 1.1-2.2, p = 0.01). When assessing CAA markers, APOE alleles were independently associated with FLP (ε4: OR 1.74, 95% CI 1.04-2.93, p = 0.04 and ε2/ε4: 2.56, 95% CI 0.99-6.61, p = 0.05). We did not find an association between APOE alleles and SAE. DISCUSSION: We confirmed associations between APOE alleles and ICH including lobar ICH. Our analysis shows selective associations between APOE ε2 and ε4 alleles with FLP, a CT marker of CAA. Our findings suggest that different APOE alleles might have diverging influences on individual neuroimaging biomarkers of CAA-associated ICH.


Subject(s)
Cerebral Amyloid Angiopathy , Cerebral Small Vessel Diseases , Aged , Apolipoprotein E2/genetics , Apolipoprotein E4 , Apolipoproteins E , Biomarkers , Cerebral Amyloid Angiopathy/complications , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/genetics , Cerebral Small Vessel Diseases/complications , Female , Humans , Male , Middle Aged , Prospective Studies
14.
Trials ; 23(1): 606, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35897114

ABSTRACT

BACKGROUND: Carotid endarterectomy is currently recommended for patients with recently symptomatic carotid stenosis ≥50%, based on randomised trials conducted 30 years ago. Several factors such as carotid plaque ulceration, age and associated comorbidities might influence the risk-benefit ratio of carotid revascularisation. A model developed in previous trials that calculates the future risk of stroke based on these features can be used to stratify patients into low, intermediate or high risk. Since the original trials, medical treatment has improved significantly. Our hypothesis is that patients with carotid stenosis ≥50% associated with a low to intermediate risk of stroke will not benefit from additional carotid revascularisation when treated with optimised medical therapy. We also hypothesise that prediction of future risk of stroke in individual patients with carotid stenosis can be improved using the results of magnetic resonance imaging (MRI) of the carotid plaque. METHODS: Patients are randomised between immediate revascularisation plus OMT versus OMT alone. Suitable patients are those with asymptomatic or symptomatic carotid stenosis ≥50% with an estimated 5-year risk of stroke of <20%, as calculated using the Carotid Artery Risk score. MRI of the brain at baseline and during follow-up will be used as a blinded measure to assess the incidence of silent infarction and haemorrhage, while carotid plaque MRI at baseline will be used to investigate the hypotheses that plaque characteristics determine future stroke risk and help identify a subgroup of patients that will benefit from revascularisation. An initial analysis will be conducted after recruitment of 320 patients with baseline MRI and a minimum of 2 years of follow-up, to provide data to inform the design and sample size for a continuation or re-launch of the study. The primary outcome measure of this initial analysis is the combined 2-year rate of any clinically manifest stroke, new cerebral infarct on MRI, myocardial infarction or periprocedural death. DISCUSSION: ECST-2 will provide new data on the efficacy of modern optimal medical therapy alone versus added carotid revascularisation in patients with carotid stenosis at low to intermediate risk of future stroke selected by individualised risk assessment. We anticipate that the results of baseline brain and carotid plaque MRI will provide data to improve the prediction of the risk of stroke and the effect of treatment in patients with carotid stenosis. TRIAL REGISTRATION: ISRCTN registry ISRCTN97744893 . Registered on 05 July 2012.


Subject(s)
Carotid Stenosis , Endarterectomy, Carotid , Plaque, Atherosclerotic , Stroke , Carotid Stenosis/complications , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/therapy , Endarterectomy, Carotid/adverse effects , Humans , Randomized Controlled Trials as Topic , Risk Factors , Stents/adverse effects , Stroke/complications , Stroke/prevention & control , Treatment Outcome
15.
Lancet Neurol ; 21(8): 714-725, 2022 08.
Article in English | MEDLINE | ID: mdl-35841910

ABSTRACT

BACKGROUND: Cerebral amyloid angiopathy (CAA) is an age-related small vessel disease, characterised pathologically by progressive deposition of amyloid ß in the cerebrovascular wall. The Boston criteria are used worldwide for the in-vivo diagnosis of CAA but have not been updated since 2010, before the emergence of additional MRI markers. We report an international collaborative study aiming to update and externally validate the Boston diagnostic criteria across the full spectrum of clinical CAA presentations. METHODS: In this multicentre, hospital-based, retrospective, MRI and neuropathology diagnostic accuracy study, we did a retrospective analysis of clinical, radiological, and histopathological data available to sites participating in the International CAA Association to formulate updated Boston criteria and establish their diagnostic accuracy across different populations and clinical presentations. Ten North American and European academic medical centres identified patients aged 50 years and older with potential CAA-related clinical presentations (ie, spontaneous intracerebral haemorrhage, cognitive impairment, or transient focal neurological episodes), available brain MRI, and histopathological assessment for CAA diagnosis. MRI scans were centrally rated at Massachusetts General Hospital (Boston, MA, USA) for haemorrhagic and non-haemorrhagic CAA markers, and brain tissue samples were rated by neuropathologists at the contributing sites. We derived the Boston criteria version 2.0 (v2.0) by selecting MRI features to optimise diagnostic specificity and sensitivity in a prespecified derivation cohort (Boston cases 1994-2012, n=159), then externally validated the criteria in a prespecified temporal validation cohort (Boston cases 2012-18, n=59) and a geographical validation cohort (non-Boston cases 2004-18; n=123), comparing accuracy of the new criteria to the currently used modified Boston criteria with histopathological assessment of CAA as the diagnostic standard. We also assessed performance of the v2.0 criteria in patients across all cohorts who had the diagnostic gold standard of brain autopsy. FINDINGS: The study protocol was finalised on Jan 15, 2017, patient identification was completed on Dec 31, 2018, and imaging analyses were completed on Sept 30, 2019. Of 401 potentially eligible patients presenting to Massachusetts General Hospital, 218 were eligible to be included in the analysis; of 160 patient datasets from other centres, 123 were included. Using the derivation cohort, we derived provisional criteria for probable CAA requiring the presence of at least two strictly lobar haemorrhagic lesions (ie, intracerebral haemorrhages, cerebral microbleeds, or foci of cortical superficial siderosis) or at least one strictly lobar haemorrhagic lesion and at least one white matter characteristic (ie, severe visible perivascular spaces in centrum semiovale or white matter hyperintensities in a multispot pattern). The sensitivity and specificity of these criteria were 74·8% (95% CI 65·4-82·7) and 84·6% (71·9-93·1) in the derivation cohort, 92·5% (79·6-98·4) and 89·5% (66·9-98·7) in the temporal validation cohort, 80·2% (70·8-87·6) and 81·5% (61·9-93·7) in the geographical validation cohort, and 74·5% (65·4-82·4) and 95·0% (83·1-99·4) in all patients who had autopsy as the diagnostic standard. The area under the receiver operating characteristic curve (AUC) was 0·797 (0·732-0·861) in the derivation cohort, 0·910 (0·828-0·992) in the temporal validation cohort, 0·808 (0·724-0·893) in the geographical validation cohort, and 0·848 (0·794-0·901) in patients who had autopsy as the diagnostic standard. The v2.0 Boston criteria for probable CAA had superior accuracy to the current Boston criteria (sensitivity 64·5% [54·9-73·4]; specificity 95·0% [83·1-99·4]; AUC 0·798 [0·741-0854]; p=0·0005 for comparison of AUC) across all individuals who had autopsy as the diagnostic standard. INTERPRETATION: The Boston criteria v2.0 incorporate emerging MRI markers of CAA to enhance sensitivity without compromising their specificity in our cohorts of patients aged 50 years and older presenting with spontaneous intracerebral haemorrhage, cognitive impairment, or transient focal neurological episodes. Future studies will be needed to determine generalisability of the v.2.0 criteria across the full range of patients and clinical presentations. FUNDING: US National Institutes of Health (R01 AG26484).


Subject(s)
Cerebral Amyloid Angiopathy , Neuropathology , Aged , Amyloid beta-Peptides , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Hemorrhage/pathology , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Retrospective Studies
16.
Eur Radiol ; 32(6): 3716-3725, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35044509

ABSTRACT

Neurological and neuroradiological manifestations in patients with COVID-19 have been extensively reported. Available imaging data are, however, very heterogeneous. Hence, there is a growing need to standardise clinical indications for neuroimaging, MRI acquisition protocols, and necessity of follow-up examinations. A NeuroCovid working group with experts in the field of neuroimaging in COVID-19 has been constituted under the aegis of the Subspecialty Committee on Diagnostic Neuroradiology of the European Society of Neuroradiology (ESNR). The initial objectives of this NeuroCovid working group are to address the standardisation of the imaging in patients with neurological manifestations of COVID-19 and to give advice based on expert opinion with the aim of improving the quality of patient care and ensure high quality of any future clinical studies. KEY POINTS: • In patients with COVID-19 and neurological manifestations, neuroimaging should be performed in order to detect underlying causal pathology. • The basic MRI recommended protocol includes T2-weighted, FLAIR (preferably 3D), and diffusion-weighted images, as well as haemorrhage-sensitive sequence (preferably SWI), and at least for the initial investigation pre and post-contrast T1 weighted-images. • 3D FLAIR should be acquired after gadolinium administration in order to optimise the detection of leptomeningeal contrast enhancement.


Subject(s)
COVID-19 , Consensus , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Neuroimaging/methods
17.
J Neurol ; 269(3): 1427-1438, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34272978

ABSTRACT

OBJECTIVE: To investigate the frequency, time-course and predictors of intracerebral haemorrhage (ICH), recurrent convexity subarachnoid haemorrhage (cSAH), and ischemic stroke after cSAH associated with cerebral amyloid angiopathy (CAA). METHODS: We performed a systematic review and international individual patient-data pooled analysis in patients with cSAH associated with probable or possible CAA diagnosed on baseline MRI using the modified Boston criteria. We used Cox proportional hazards models with a frailty term to account for between-cohort differences. RESULTS: We included 190 patients (mean age 74.5 years; 45.3% female) from 13 centers with 385 patient-years of follow-up (median 1.4 years). The risks of each outcome (per patient-year) were: ICH 13.2% (95% CI 9.9-17.4); recurrent cSAH 11.1% (95% CI 7.9-15.2); combined ICH, cSAH, or both 21.4% (95% CI 16.7-26.9), ischemic stroke 5.1% (95% CI 3.1-8) and death 8.3% (95% CI 5.6-11.8). In multivariable models, there is evidence that patients with probable CAA (compared to possible CAA) had a higher risk of ICH (HR 8.45, 95% CI 1.13-75.5, p = 0.02) and cSAH (HR 3.66, 95% CI 0.84-15.9, p = 0.08) but not ischemic stroke (HR 0.56, 95% CI 0.17-1.82, p = 0.33) or mortality (HR 0.54, 95% CI 0.16-1.78, p = 0.31). CONCLUSIONS: Patients with cSAH associated with probable or possible CAA have high risk of future ICH and recurrent cSAH. Convexity SAH associated with probable (vs possible) CAA is associated with increased risk of ICH, and cSAH but not ischemic stroke. Our data provide precise risk estimates for key vascular events after cSAH associated with CAA which can inform management decisions.


Subject(s)
Brain Ischemia , Cerebral Amyloid Angiopathy , Ischemic Stroke , Stroke , Subarachnoid Hemorrhage , Aged , Brain Ischemia/complications , Brain Ischemia/diagnostic imaging , Brain Ischemia/epidemiology , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/epidemiology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Female , Humans , Magnetic Resonance Imaging , Male , Stroke/complications , Stroke/diagnostic imaging , Stroke/epidemiology , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/diagnostic imaging , Subarachnoid Hemorrhage/epidemiology
18.
Br J Neurosurg ; 36(2): 217-227, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33645357

ABSTRACT

PURPOSE: Intra-arterial Digital Subtraction Angiography (DSA) is the gold standard technique for radiosurgery target delineation in brain Arterio-Venous Malformations (AVMs). This study aims to evaluate whether a combination of three Magnetic Resonance Angiography sequences (triple-MRA) could be used for delineation of brain AVMs for Gamma Knife Radiosurgery (GKR). METHODS: Fifteen patients undergoing DSA for GKR targeting of brain AVMs also underwent triple-MRA: 4D Arterial Spin Labelling based angiography (ASL-MRA), Contrast-Enhanced Time-Resolved MRA (CE-MRA) and High Definition post-contrast Time-Of-Flight angiography (HD-TOF). The arterial phase of the AVM nidus was delineated on triple-MRA by an interventional neuroradiologist and a consultant neurosurgeon (triple-MRA volume). Triple-MRA volumes were compared to AVM targets delineated by the clinical team for delivery of GKR using the current planning paradigm, i.e., stereotactic DSA and volumetric MRI (DSA volume). Difference in size, degree of inclusion (DI) and concordance index (CcI) between DSA and triple-MRA volumes are reported. RESULTS: AVM target volumes delineated on triple-MRA were on average 9.8% smaller than DSA volumes (95%CI:5.6-13.9%; SD:7.14%; p = .003). DI of DSA volume in triple-MRA volume was on average 73.5% (95%CI:71.2-76; range: 65-80%). The mean percentage of triple-MRA volume not included on DSA volume was 18% (95%CI:14.7-21.3; range: 7-30%). CONCLUSION: The technical feasibility of using triple-MRA for visualisation and delineation of brain AVMs for GKR planning has been demonstrated. Tighter and more precise delineation of AVM target volumes could be achieved by using triple-MRA for radiosurgery targeting. However, further research is required to ascertain the impact this may have in obliteration rates and side effects.


Subject(s)
Intracranial Arteriovenous Malformations , Radiosurgery , Angiography, Digital Subtraction/methods , Brain/diagnostic imaging , Humans , Imaging, Three-Dimensional , Intracranial Arteriovenous Malformations/diagnostic imaging , Intracranial Arteriovenous Malformations/radiotherapy , Intracranial Arteriovenous Malformations/surgery , Magnetic Resonance Angiography/methods , Radiosurgery/methods
19.
Cortex ; 145: 1-12, 2021 12.
Article in English | MEDLINE | ID: mdl-34673291

ABSTRACT

Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models-for individual prediction or population-level inference-commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke-N = 1333-here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure-outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity.


Subject(s)
Stroke , Brain/diagnostic imaging , Brain Mapping , Humans , Stroke/diagnostic imaging
20.
Brain Commun ; 3(3): fcab099, 2021.
Article in English | MEDLINE | ID: mdl-34396099

ABSTRACT

Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n = 34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n = 94) and without (n = 24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14 800 pg/ml (400, 32 400)], compared to those with encephalopathy [1410 pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740 pg/ml (507, 881)] and controls [872 pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...