Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 100(18): e1852-e1865, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36927882

ABSTRACT

BACKGROUND AND OBJECTIVES: The efficacy of deep brain stimulation of the anterior nucleus of the thalamus (ANT DBS) in patients with drug-resistant epilepsy (DRE) was demonstrated in the double-blind Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy randomized controlled trial. The Medtronic Registry for Epilepsy (MORE) aims to understand the safety and longer-term effectiveness of ANT DBS therapy in routine clinical practice. METHODS: MORE is an observational registry collecting prospective and retrospective clinical data. Participants were at least 18 years old, with focal DRE recruited across 25 centers from 13 countries. They were followed for at least 2 years in terms of seizure frequency (SF), responder rate (RR), health-related quality of life (Quality of Life in Epilepsy Inventory 31), depression, and safety outcomes. RESULTS: Of the 191 patients recruited, 170 (mean [SD] age of 35.6 [10.7] years, 43% female) were implanted with DBS therapy and met all eligibility criteria. At baseline, 38% of patients reported cognitive impairment. The median monthly SF decreased by 33.1% from 15.8 at baseline to 8.8 at 2 years (p < 0.0001) with 32.3% RR. In the subgroup of 47 patients who completed 5 years of follow-up, the median monthly SF decreased by 55.1% from 16 at baseline to 7.9 at 5 years (p < 0.0001) with 53.2% RR. High-volume centers (>10 implantations) had 42.8% reduction in median monthly SF by 2 years in comparison with 25.8% in low-volume center. In patients with cognitive impairment, the reduction in median monthly SF was 26.0% by 2 years compared with 36.1% in patients without cognitive impairment. The most frequently reported adverse events were changes (e.g., increased frequency/severity) in seizure (16%), memory impairment (patient-reported complaint, 15%), depressive mood (patient-reported complaint, 13%), and epilepsy (12%). One definite sudden unexpected death in epilepsy case was reported. DISCUSSION: The MORE registry supports the effectiveness and safety of ANT DBS therapy in a real-world setting in the 2 years following implantation. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that ANT DBS reduces the frequency of seizures in patients with drug-resistant focal epilepsy. TRIAL REGISTRATION INFORMATION: MORE ClinicalTrials.gov Identifier: NCT01521754, first posted on January 31, 2012.


Subject(s)
Anterior Thalamic Nuclei , Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Humans , Female , Child , Adolescent , Male , Deep Brain Stimulation/adverse effects , Quality of Life , Retrospective Studies , Prospective Studies , Thalamus , Epilepsy/etiology , Drug Resistant Epilepsy/therapy , Seizures/etiology , Registries
2.
Neuromodulation ; 26(8): 1733-1741, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35688700

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is an emerging form of adjunctive therapy in focal refractory epilepsy. Unlike conventional DBS targets, the ANT is both encapsulated by white matter layers and located immediately adjacent to the cerebrospinal fluid (CSF) space. Owing to the location of the ANT, implantation has most commonly been performed using a transventricular trajectory. Previous studies suggest different electrical conductivity between gray matter, white matter, and CSF. OBJECTIVES: In this study, we asked whether therapeutic impedance values from a fully implanted DBS device could be used to deduce the actual location of the active contact to optimize the stimulation site. Secondly, we tested whether impedance values correlate with patient outcomes. MATERIALS AND METHODS: A total of 16 patients with ANT-DBS for refractory epilepsy were evaluated in this prospective study. Therapeutic impedance values were recorded on regular outpatient clinic visits. Contact locations were analyzed using delayed contrast-enhanced postoperative computed tomography-3T magnetic resonance imaging short tau inversion recovery fusion images previously shown to demonstrate anatomical details around the ANT. RESULTS: Transventricularly implanted contacts immediately below the CSF surface showed overall lower and slightly decreasing impedances over time compared with higher and more stable impedances in contacts with deeper parenchymal location. Impedance values in transventricularly implanted contacts in the ANT were significantly lower than those in transventricularly implanted contacts outside the ANT or extraventricularly implanted contacts that were typically at the posterior/inferior/lateral border of the ANT. Increasing contact distance from the CSF surface was associated with a linear increase in therapeutic impedance. We also found that therapeutic impedance values were significantly lower in contacts with favorable therapy response than in nonresponding contacts. Finally, we observed a significant correlation between the left- and right-side averaged impedance and the reduction of the total number of seizures. CONCLUSIONS: Valuable information can be obtained from the noninvasive measurement of therapeutic impedances. The selection of active contacts to target stimulation to the anterior nucleus may be guided by therapeutic impedance measurements to optimize outcome.


Subject(s)
Anterior Thalamic Nuclei , Deep Brain Stimulation , Drug Resistant Epilepsy , Humans , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/therapy , Deep Brain Stimulation/methods , Electric Impedance , Prospective Studies , Seizures/therapy , Anterior Thalamic Nuclei/physiology
3.
Sci Rep ; 11(1): 13765, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215817

ABSTRACT

The aim of this study was to evaluate the effects of deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) on systemic inflammatory responses in patients with drug-resistant epilepsy (DRE). Twenty-two Finnish patients with ANT-DBS implantation were enrolled in this pilot study. Changes in plasma interleukin-6 (IL-6) and interleukin-10 (IL-10) levels were examined using generalized estimating equation models at seven time points (before DBS surgery and 1, 2, 3, 6, 9 and 12 months after implantation). In the whole group, the IL-6/IL-10 ratio decreased significantly over time following ANT-DBS, while the decrease in IL-6 levels and increase in IL-10 levels were not significant. In the responder and nonresponder groups, IL-6 levels remained unchanged during the follow-up. Responders had significantly lower pre-DBS IL-10 levels before the ANT-DBS treatment than nonresponders, but the levels significantly increased over time after the treatment. In addition, responders had a higher pre-DBS IL-6/IL-10 ratio than nonresponders, and the ratio decreased for both groups after treatment, but the decrease did not reach the level of statistical significance. The rate of decrease in the ratio per month tended to be higher in responders than in nonresponders. These results may highlight the anti-inflammatory properties of ANT-DBS treatment associated with its therapeutic effectiveness in patients with DRE. Additional studies are essential to evaluate the potential of the proinflammatory cytokine IL-6, the anti-inflammatory cytokine IL-10, and their ratio as biomarkers to evaluate the therapeutic response to DBS treatment, which could facilitate treatment optimization.


Subject(s)
Deep Brain Stimulation , Drug Resistant Epilepsy/therapy , Interleukin-10/blood , Interleukin-6/blood , Adult , Aged , Anterior Thalamic Nuclei/immunology , Anterior Thalamic Nuclei/metabolism , Anterior Thalamic Nuclei/radiation effects , Cytokines/blood , Drug Resistant Epilepsy/blood , Drug Resistant Epilepsy/immunology , Drug Resistant Epilepsy/physiopathology , Electric Stimulation , Female , Follow-Up Studies , Humans , Male , Middle Aged , Vagus Nerve Stimulation/methods , Young Adult
4.
Epilepsia Open ; 5(3): 406-417, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32913949

ABSTRACT

OBJECTIVE: Deep brain stimulation of the ANT is a novel treatment option in refractory epilepsy with an established efficacy at the group level. However, data on the effect of individualized programming are currently lacking. We report the effect of programming changes on outcome in deep brain stimulation of anterior nucleus of thalamus (ANT DBS). Secondly, we investigated whether the effect differs between seizure types. Thirdly, we compared the response status between patients with stimulation contacts verified inside the ANT with patients with contacts located outside of ANT. METHODS: The participants were 27 consecutive patients with ANT DBS implantation with at least two-year follow-up. Seizures were subdivided into focal aware (FAS), focal impaired awareness (FIAS), and focal to bilateral tonic-clonic seizures (FBTCS). The patients' seizure diaries were analyzed retrospectively to assess changes in different seizure types. Active contact locations for each patient were verified from preoperative MRI and postoperative CT fusion images using SureTune III (Medtronic Inc, Minneapolis, MN) software. RESULTS: A significant reduction in monthly mean seizure frequency occurred in FIAS: 56% at two-year and 65% at five-year follow-up. The effects on FAS and FBTCS were less pronounced. Patients with contacts inside the ANT or on the anterolateral border of ANT experienced a greater reduction in seizure frequency than patients with outside-ANT contacts. Ultimately, seven patients became responders due to changes in DBS programming or repositioning of contacts, increasing our responder rate from 44% to 70% as measured by a seizure reduction of at least 50%. SIGNIFICANCE: ANT DBS appears to be especially effective in reducing FIAS, when the appropriately chosen contacts are activated.

5.
Epilepsy Behav ; 88: 373-379, 2018 11.
Article in English | MEDLINE | ID: mdl-30290977

ABSTRACT

OBJECTIVE: Anterior nucleus of thalamus (ANT) deep brain stimulation (DBS) is becoming a more common treatment for drug-resistant epilepsy. Epilepsy and depression display a bidirectional association. Anterior nucleus of thalamus has connections to anterior cingulate cortex and orbitomedial prefrontal cortex, hence, a possible role in emotional and executive functions, and thus, ANT DBS might exert psychiatric adverse effects. Our aim was to evaluate previous and current psychiatric symptoms in patients with epilepsy undergoing ANT DBS surgery and assess the predictability of psychiatric adverse effects. Programming-related psychiatric adverse effects are also reported. METHOD: Twenty-two patients with ANT DBS for retractable epilepsy were examined, and a psychiatric evaluation of depressive and other psychiatric symptoms was performed with Montgomery and Åsberg Depression Rating Scale (MADRS), Beck Depression Inventory (BDI), and Symptom Checklist prior to surgery, concentrating on former and current psychiatric symptoms and medications. The follow-up visit was one year after surgery. RESULTS: At the group level, no changes on mood were observed during ANT DBS treatment. Two patients with former histories of depression experienced sudden depressive symptoms related to DBS programming settings; these were quickly alleviated after changing the stimulation parameters. In addition, two patients with no previous histories of psychosis gradually developed clear paranoid and anxiety symptoms that also relieved slowly after changing the programming settings. CONCLUSION: The majority of our ANT DBS patients did not experience psychiatric adverse effects. Certain DBS parameters might predispose to sudden depressive or slowly manifesting paranoid symptoms that are reversible via programming changes.


Subject(s)
Anterior Thalamic Nuclei , Deep Brain Stimulation/methods , Drug Resistant Epilepsy/therapy , Mental Disorders/prevention & control , Adult , Deep Brain Stimulation/adverse effects , Depressive Disorder/prevention & control , Drug Resistant Epilepsy/psychology , Female , Humans , Male , Mental Disorders/etiology , Middle Aged , Young Adult
6.
Front Neurol ; 9: 324, 2018.
Article in English | MEDLINE | ID: mdl-29867733

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of the anterior nucleus of thalamus (ANT) is an emerging treatment option for patients suffering from refractory epilepsy. ANT has extensive connections with hippocampus and retrosplenial cingulum, areas associated mainly with spatial memory and with anterior cingulum which is important in executive functions. As refractory epilepsy is often associated with cognitive decline and neuronal damage, the decreased connectivity between ANT and remote structures might impact on the effects of DBS. OBJECTIVE: We hypothesized that the neuropsychological profile could reflect the connectivity of ANT and further predict the efficacy of ANT DBS. We evaluated the cognitive performance of patients with refractory epilepsy with DBS to evaluate whether neuropsychological profiles could reflect the connectivity of ANT and further predict the efficacy of ANT DBS. METHOD: Sixteen patients with refractory epilepsy treated with ANT DBS with at least 2 years of follow-up were included in the study. Patients underwent a neuropsychological evaluation as a part of the protocol and their clinical outcome was determined by seizure frequency in the last 6 months compared to baseline. The patients were classified as responders if there was a ≥50% reduction in the frequency of the predominant seizure type, otherwise as nonresponders. RESULTS: There were 12 responders and 4 nonresponders for ANT DBS treatment in the study population. Nonresponders performed worse than responders in neuropsychological tasks measuring executive functions and attention, such as the Trail-Making Test. CONCLUSION: Better executive functions and attention seemed to predict improved clinical outcome after the ANT DBS surgery. Based on our preliminary descriptive findings and the anatomical connectivity hypothesis, we suggest that deficits in executive functions may relate to an inferior outcome. This finding might offer new tools for refining the selection of patients with refractory epilepsy scheduled to undergo ANT DBS surgery. Moreover, it highlights the need for further investigations of neural connectivity in epilepsy.

7.
Front Neurol ; 9: 66, 2018.
Article in English | MEDLINE | ID: mdl-29515512

ABSTRACT

Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a method of neuromodulation used for refractory focal epilepsy. We report a patient suffering from drug-resistant epilepsy who developed novel visual symptoms and atypical seizures with the onset of ANT-DBS therapy. Rechallenge under video electroencephalography recording confirmed that lowering the stimulation voltage alleviated these symptoms. Subsequent stimulation with the initial voltage value did not cause the recurrence of either the visual symptoms or the new seizure type, and appeared to alleviate the patient's seizures in long-term follow-up. We therefore hypothesize that the occurrence of stimulation induced seizures at the onset of DBS therapy should not be considered as a failure in the DBS therapy, and the possibility of a subsequent favorable response to the treatment still exists.

SELECTION OF CITATIONS
SEARCH DETAIL
...