Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36984193

ABSTRACT

The Mg-Zn-Ca system has previously been proposed as the most suitable biodegradable candidate for biomedical applications. In this work, a series of ribbon specimens was fabricated using a melt-spinning technique to explore the glass-forming ability of the Mg-Zn-Ca system along the concentration line of 7 at.% of calcium. A glassy state is confirmed for Mg50Zn43Ca7, Mg60Zn33Ca7, and Mg70Zn23Ca7. Those samples were characterised by standard methods to determine their mass density, hardness, elastic modulus, and crystallisation temperatures during devitrification. Their amorphous structure is described by means of pair distribution functions obtained by high-energy X-ray and neutron diffraction (HEXRD and ND) measurements performed at large-scale facilities. The contributions of pairs Mg-Mg, Mg-Zn, and Zn-Zn were identified. In addition, a transformation process from an amorphous to crystalline structure is followed in situ by HEXRD for Mg60Zn33Ca7 and Mg50Zn43Ca7. Intermetallic compounds IM1 and IM3 and hcp-Mg phase are proposed to be formed in multiple crystallisation eventss.

2.
J Phys Chem B ; 120(34): 9204-14, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27479758

ABSTRACT

The structure of Ge20SbxSe80-x (x = 5, 15, 20) glasses was investigated by neutron diffraction, X-ray diffraction, and extended X-ray fine structure measurements at the Ge, Sb, and Se K-edges. For each composition, large-scale structural models were obtained by fitting simultaneously the experimental data sets in the framework of the reverse Monte Carlo simulation technique. It was found that the structures of these glasses can be described mostly by the chemically ordered network model. Ge-Se and Sb-Se bonds are preferred; Se-Se bonds in the Se-poor composition (x = 20) and M-M (M = Ge, Sb) bonds in strongly Se-rich glass (x = 5) are not needed. The quality of the fits was significantly improved by introducing Ge-Ge bonding in the nearly stoichiometric composition (x = 15), showing a violation of chemical ordering. The structure of Ge20SbxSe80-x was compared to that of several glasses from the three analogous systems (Ge-As-Se, Ge-As-Te, Ge-Sb-Te), and it was found that chemical short-range order becomes more pronounced upon substituting As with Sb and Se with Te. Ge-As-Se glasses behave as random covalent networks over a very broad composition range. Chemical short-range order and disorder coexist in both Te-rich and Te-poor Ge-As-Te glasses, whereas amorphous Ge14Sb29Te57 and Ge22Sb22Te56 are governed by strict chemical preferences.

3.
Sci Rep ; 6: 27434, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27272222

ABSTRACT

Phase-change materials exhibit fast and reversible transitions between an amorphous and a crystalline state at high temperature. The two states display resistivity contrast, which is exploited in phase-change memory devices. The technologically most important family of phase-change materials consists of Ge-Sb-Te alloys. In this work, we investigate the structural, electronic and kinetic properties of liquid Ge2Sb2Te5 as a function of temperature by a combined experimental and computational approach. Understanding the properties of this phase is important to clarify the amorphization and crystallization processes. We show that the structural properties of the models obtained from ab initio and reverse Monte Carlo simulations are in good agreement with neutron and X-ray diffraction experiments. We extract the kinetic coefficients from the molecular dynamics trajectories and determine the activation energy for viscosity. The obtained value is shown to be fully compatible with our viscosity measurements.

4.
Rapid Commun Mass Spectrom ; 28(11): 1221-32, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24760563

ABSTRACT

RATIONALE: Rare earth-doped sulphide glasses in the Ga-Ge-Sb-S system present radiative emissions from the visible to the middle infrared range (mid-IR) range, which are of interest for a variety of applications including (bio)-chemical optical sensing, light detection, and military counter-measures. The aim of this work was to reveal structural motifs present during the fabrication of thin films by plasma deposition techniques as such knowledge is important for the optimization of thin film growth. METHODS: The formation of clusters in plasma plume from different concentrations of erbium-doped Ga5Ge20Sb10S65 glasses (0.05, 0.1, and 0.5 wt. % of erbium) using laser (337 nm) desorption ionization (LDI) was studied by time-of-flight mass spectrometry (TOF MS) in both positive and negative ion mode. The stoichiometry of the Ga(m)Ge(n)Sb(o)S(p)(+/-) clusters was determined via isotopic envelope analysis and computer modelling. RESULTS: Several Ga(m)Ge(n)Sb(o)S(p)(+/-) singly charged clusters were found but, surprisingly, only four species (Sb3S4(+/-), GaSb2S(p)(+/-) (p = 4, 5), Ga3Sb2S7(+/-) ) were common to both ion modes. For the first time, species containing rare earths (GaSb2SEr(+) and GaS6 Er2(+)) were identified in the plasma formed from rare earth-doped chalcogenide glasses, directly confirming the importance of gallium presence for rare earth bonding within the glassy matrix. CONCLUSIONS: The local structure of Ga-Ge-Sb-S glasses is at least partly different from the structure of species identified in plasma by mass spectrometry, as deduced from Raman scattering spectroscopy analysis; these glasses are mainly formed by [GeS4/2]/[GaS4/2] tetrahedra and [SbS3/2] pyramids. Extended X-ray absorption fine structure measurements show that Er(3+) ions in Ga-Ge-Sb-S glasses are surrounded by 7 sulphur atoms.


Subject(s)
Antimony/chemistry , Gallium/chemistry , Germanium/chemistry , Sulfur/chemistry , Glass/chemistry , Lasers , Mass Spectrometry , Molecular Weight
5.
J Phys Condens Matter ; 22(40): 404207, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-21386568

ABSTRACT

The structure of glassy Te(78)Ge(11)Ga(11), Te(79)Ge(16)Ga(5), Te(70)Ge(20)Se(10) and Te(73)Ge(20)I(7)--promising materials for far infrared applications--was investigated by means of x-ray and neutron diffraction as well as extended x-ray absorption fine structure measurements at various edges. Experimental data sets were fitted simultaneously in the framework of the reverse Monte Carlo simulation technique. Short range order in Te(85)Ge(15) was reinvestigated by fitting a new x-ray diffraction measurement together with available neutron diffraction and extended x-ray absorption fine structure data. It was found that Te(85)Ge(15) consists mostly of GeTe(4) structural units linked together directly or via bridging Te atoms. Te is predominantly twofold coordinated in Te(85)Ge(15), Te(70)Ge(20)Se(10) and Te(73)Ge(20)I(7) while in Te(78)Ge(11)Ga(11) and Te(79)Ge(16)Ga(5) the Te coordination number is significantly higher than 2. The Te-Te bond length is 2.80 ± 0.02 Å in Te(78)Ge(11)Ga(11) while it is as short as 2.70 ± 0.02 Å and 2.73 ± 0.02 Å in Te(73)Ge(20)I(7) and Te(70)Ge(20)Se(10), respectively. Our results show that the strengths of GeTe(4) (GeTe(3)I, GeTe(3)Se) 'units' are very similar in all glasses investigated but the connection between these units depends on the third component. Differences in the Te coordination number suggest that unlike Se or I, Ga does not build into the Ge-Te covalent network. Instead, it forms a covalent bond with the non-bonding p electrons of Te, which results in an increase in the average Te coordination number.


Subject(s)
Gallium/chemistry , Germanium/chemistry , Glass/chemistry , Indium/chemistry , Iodine/chemistry , Selenium/chemistry , Tellurium/chemistry , Neutron Diffraction
6.
J Phys Condens Matter ; 22(40): 404211, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-21386572

ABSTRACT

New neutron and x-ray diffraction measurements are reported on liquid chloroform, CHCl(3), and bromoform, CHBr(3). Experimental total scattering structure factors have been interpreted by the reverse Monte Carlo method of structural modelling. Partial radial distribution functions, intramolecular bond angle distributions and functions characterizing distance-dependent orientational correlations have been calculated directly from the particle coordinates. It has been found that most of these characteristics of the microscopic structure can be approximated rather well by functions calculated for hard sphere like reference systems. The two liquids show similar features from the point of view of their structure. There are also some distinctive features in terms of orientational correlations: nearest neighbour molecules prefer face-to-face arrangement in chloroform whereas in bromoform, edge-to-face configurations dominate, with a significant occurrence of corner-to-face type correlations.


Subject(s)
Chloroform/chemistry , Models, Molecular , Monte Carlo Method , Computer Simulation , Neutron Diffraction , Trihalomethanes/chemistry , X-Ray Absorption Spectroscopy , X-Ray Diffraction
7.
J Phys Condens Matter ; 18(32): 7579-92, 2006 Aug 16.
Article in English | MEDLINE | ID: mdl-21690871

ABSTRACT

Atomic structures of amorphous Al(89)La(6)Ni(5), prepared by single-roller melt spinning, and pre-annealed at 493 and 588 K for 1 h, were characterized by differential scanning calorimetry, x-ray diffraction with a large wavevector transfer value, La L(3)-edge and Ni K-edge x-ray absorption fine structure and the reverse Monte Carlo technique. In the as-prepared amorphous alloy, our study reveals that the Ni-Al distance is 2.38 ± 0.02 Å coupled with a coordination number as low as 6.2. The Al-Al distance was found to be ∼4.5% shorter than the nominal atomic diameter of aluminium and the coordination number to be ∼39% less than expected from the dense random packing model. Crystallization of the Al(89)La(6)Ni(5) glassy alloy at high temperatures can be described as follows: [amorphous alloy] [Formula: see text] [fcc-Al] + [bcc-(AlLa)] + residual amorphous [Formula: see text] [fcc-Al] + [o-Al(3)Ni ] + [o-La(3)Al(11) ].

SELECTION OF CITATIONS
SEARCH DETAIL
...