Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pathogens ; 12(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986380

ABSTRACT

Entomopathogenic bacteria are obligate symbionts of entomopathogenic nematode (EPN) species. These bacteria biosynthesize and release non-ribosomal-templated hybrid peptides (NR-AMPs), with strong, and large-spectral antimicrobial potential, capable of inactivating pathogens belonging to different prokaryote, and eukaryote taxa. The cell-free conditioned culture media (CFCM) of Xenorhabdus budapestensis and X. szentirmaii efficiently inactivate poultry pathogens like Clostridium, Histomonas, and Eimeria. To learn whether a bio-preparation containing antimicrobial peptides of Xenorhabdus origin with accompanying (in vitro detectable) cytotoxic effects could be considered a safely applicable preventive feed supplement, we conducted a 42-day feeding experiment on freshly hatched broiler cockerels. XENOFOOD (containing autoclaved X. budapestensis, and X. szentirmaii cultures developed on chicken food) were consumed by the birds. The XENOFOOD exerted detectable gastrointestinal (GI) activity (reducing the numbers of the colony-forming Clostridium perfringens units in the lower jejunum. No animal was lost in the experiment. Neither the body weight, growth rate, feed-conversion ratio, nor organ-weight data differed between the control (C) and treated (T) groups, indicating that the XENOFOOD diet did not result in any detectable adverse effects. We suppose that the parameters indicating a moderate enlargement of bursas of Fabricius (average weight, size, and individual bursa/spleen weight-ratios) in the XENOFOOD-fed group must be an indirect indication that the bursa-controlled humoral immune system neutralized the cytotoxic ingredients of the XENOFOOD in the blood, not allowing to reach their critical cytotoxic concentration in the sensitive tissues.

2.
Sci Rep ; 12(1): 9743, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697906

ABSTRACT

During Earth's history, geosphere-biosphere interactions were often determined by momentary, catastrophic changes such as large explosive volcanic eruptions. The Miocene ignimbrite flare-up in the Pannonian Basin, which is located along a complex convergent plate boundary between Europe and Africa, provides a superb example of this interaction. In North Hungary, the famous Ipolytarnóc Fossil Site, often referred to as "ancient Pompeii", records a snapshot of rich Early Miocene life buried under thick ignimbrite cover. Here, we use a multi-technique approach to constrain the successive phases of a catastrophic silicic eruption (VEI ≥ 7) dated at 17.2 Ma. An event-scale reconstruction shows that the initial PDC phase was phreatomagmatic, affecting ≥ 1500 km2 and causing the destruction of an interfingering terrestrial-intertidal environment at Ipolytarnóc. This was followed by pumice fall, and finally the emplacement of up to 40 m-thick ignimbrite that completely buried the site. However, unlike the seemingly similar AD 79 Vesuvius eruption that buried Pompeii by hot pyroclastic density currents, the presence of fallen but uncharred tree trunks, branches, and intact leaves in the basal pyroclastic deposits at Ipolytarnóc as well as rock paleomagnetic properties indicate a low-temperature pyroclastic event, that superbly preserved the coastal habitat, including unique fossil tracks.


Subject(s)
Explosive Agents , Fossils , Ecosystem , Hungary , Volcanic Eruptions
3.
J Environ Radioact ; 173: 58-69, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28011110

ABSTRACT

The research investigated three iron carbonate (siderite) sedimentary concretions from Nagykovácsi, Úri and Délegyháza, Hungary. To identify possible source rocks and effects of the glaze-like exposed surface of the concretions, we carried on comparative petrological, mineralogical, geochemical and isotopic studies. The samples were microbially mediated siderite concretions with embedded metamorphous and igneous mineral clasts, and had specific rim belts characterized by semi-concentric outer Fe-oxide layers, fluffy pyrite-rich outer belts and siderite inner parts. We investigated the cross section of the Fe-carbonate concretions by independent methodologies in order to identify their rim effects. Their surficial oxide layers showed evidence of degassing of the exposed surface caused most probably by elevated temperatures. The inner rim pyrite belt in the concretions excluded the possibility of a prolonged wet surface environment. Microtextural and mineralogical features did not support desert varnish formation. 10Be nuclide values of the Nagykovácsi and Uri concretions were far above the level of terrestrial in-situ cosmogenic nuclides, but they were consistent with the lowest levels for meteorites. Though the data were not conclusive to confirm any kind of known origin, they are contradictary, and open possibilities for a scenario of terrestrial meteorite origin.


Subject(s)
Beryllium/analysis , Carbonates/chemistry , Ferric Compounds/chemistry , Radiation Monitoring , Geologic Sediments/chemistry , Hungary , Minerals/chemistry , Paint , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...