Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1264135, 2023.
Article in English | MEDLINE | ID: mdl-37811380

ABSTRACT

A Trametes versicolor isolate from the Changbai Mountain showed promising activity in degrading benzo[a]pyrene (BaP), which is a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) compound. It was hypothesized that the T. versicolor isolate encode BaP-degrading enzymes, among which laccase is mostly sought after due to significant commercial potential. Genome of the T. versicolor isolate was sequenced and assembled, and seven laccase homologues were identified (TvLac1-7) as candidate genes potentially contributing to BaP degradation. In order to further identify the BaP responsive laccases, time-course transcriptomic and proteomic analyses were conducted in parallel on the T. versicolor isolate upon BaP treatment. Homologous laccases showed distinct expression patterns. Most strikingly, TvLac5 was rapidly induced in the secreted proteomes (secretomes), while TvLac2 was repressed. Recombinant laccase expression and biochemical characterization further showed corresponding enzymatic activity profiles, where TvLac5 was 21-fold more effective in BaP degradation compared to TvLac2. Moreover, TvLac5 also showed 3.6-fold higher BaP degrading activity compared to a commercial laccase product of T. versicolor origin. Therefore, TvLac5 was concluded to be a BaP-responsive enzyme from T. versicolor showing effective BaP degradation activity.

2.
J Colloid Interface Sci ; 629(Pt A): 794-804, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36099847

ABSTRACT

Interactions between biomolecules are ubiquitous in nature and crucial to many applications including vaccine development; environmentally friendly textile detergents; and food formulation. Using small angle X-ray scattering and structure-based molecular simulations, we explore protein-protein interactions in dilute to semi-concentrated protein solutions. We address the pertinent question, whether interaction models developed at infinite dilution can be extrapolated to concentrated regimes? Our analysis is based on measured and simulated osmotic second virial coefficients and solution structure factors at varying protein concentration and for different variants of the protein Thermomyces Lanuginosus Lipase (TLL). We show that in order to span the dilute and semi-concentrated regime, any model must carefully capture the balance between spatial and orientational correlations as the protein concentration is elevated. This requires consideration of the protein surface morphology, including possible patch interactions. Experimental data for TLL is most accurately described when assuming a patchy interaction, leading to dimer formation. Our analysis supports that the dimeric proteins predominantly exist in their open conformation where the active site is exposed, thereby maximising hydrophobic attractions that promote inter-protein alignment.


Subject(s)
Ascomycota , Eurotiales , Detergents , Ascomycota/metabolism , Lipase/chemistry , Proteins , Solutions
3.
J Colloid Interface Sci ; 614: 214-232, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35092895

ABSTRACT

HYPOTHESIS: Lipases are widely used in the detergent industry and must withstand harsh conditions involving both anionic and zwitterionic surfactants at alkaline pH. Thermomyces lanuginosus lipase (TlL) is often used and stays active at high concentrations of the anionic surfactant sodium dodecyl sulfate (SDS) at pH 8.0, but is sensitive to SDS at pH 6.0 and below. We propose that enhanced stability at pH 8.0 results from a structurally distinct complex formation with SDS. EXPERIMENTS: We use small-angle X-ray scattering (SAXS) to elucidate structures of TlL:SDS at pH 4.0, 6.0, and 8.0 and further investigate the complexes at pH 8.0 using hydrogen/deuterium exchange mass spectrometry (HDX-MS). FINDINGS: At pH 4.0, large dense aggregates are formed at low [SDS], which become gradually less dense at higher [SDS], resulting in a core-shell structure. At pH 6.0, SDS induces a TlL dimer and forms a hemi-micelle along the side of the dimer. At higher [SDS], TlL adopts a core-shell structure. At pH 8.0, TlL forms a dimer with a SDS hemi-micelle but avoids a core-shell structure and maintains activity. Three helices are identified as SDS anchor points. This study provides important structural insight into the stability of TlL towards SDS under alkaline conditions.


Subject(s)
Ascomycota , Lipase , Ascomycota/chemistry , Eurotiales/enzymology , Hydrogen-Ion Concentration , Lipase/chemistry , Scattering, Small Angle , X-Ray Diffraction
4.
Anal Chem ; 92(11): 7453-7461, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32427467

ABSTRACT

Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) enables the study of protein dynamics by measuring the time-resolved deuterium incorporation into a protein incubated in D2O. Using electron-based fragmentation in the gas phase it is possible to measure deuterium uptake at single-residue resolution. However, a prerequisite for this approach is that the solution-phase labeling is conserved in the gas phase prior to precursor fragmentation. It is therefore essential to reduce or even avoid intramolecular hydrogen/deuterium migration, which causes randomization of the deuterium labels along the peptide (hydrogen scrambling). Here, we describe an optimization strategy for reducing scrambling to a negligible level while minimizing the impact on sensitivity on a high-resolution Q-TOF equipped with ETD and an electrospray ionization interface consisting of a glass transfer capillary followed by a dual ion funnel. In our strategy we narrowed down the optimization to two accelerating potentials, and we defined the optimization of these in a simple rule by accounting for their interdependency in relation to scrambling and transmission efficiency. Using this rule, we were able to reduce scrambling from 75% to below 5% on average using the highly scrambling-sensitive quadruply charged P1 peptide scrambling probe resulting in a minor 33% transmission loss. To demonstrate the applicability of this approach, we probe the dynamics of certain regions in cytochrome c.

5.
ACS Omega ; 4(6): 9964-9975, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31460089

ABSTRACT

Many proteins are synthesized as precursors, with propeptides playing a variety of roles such as assisting in folding or preventing them from being active within the cell. While the precise role of the propeptide in fungal lipases is not completely understood, it was previously reported that mutations in the propeptide region of the Rhizomucor miehei lipase have an influence on the activity of the mature enzyme, stressing the importance of the amino acid composition of this region. We here report two structures of this enzyme in complex with its propeptide, which suggests that the latter plays a role in the correct maturation of the enzyme. Most importantly, we demonstrate that the propeptide shows inhibition of lipase activity in standard lipase assays and propose that an important role of the propeptide is to ensure that the enzyme is not active during its expression pathway in the original host.

6.
Proc Natl Acad Sci U S A ; 108(37): 15079-84, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21876164

ABSTRACT

The enzymatic degradation of recalcitrant plant biomass is one of the key industrial challenges of the 21st century. Accordingly, there is a continuing drive to discover new routes to promote polysaccharide degradation. Perhaps the most promising approach involves the application of "cellulase-enhancing factors," such as those from the glycoside hydrolase (CAZy) GH61 family. Here we show that GH61 enzymes are a unique family of copper-dependent oxidases. We demonstrate that copper is needed for GH61 maximal activity and that the formation of cellodextrin and oxidized cellodextrin products by GH61 is enhanced in the presence of small molecule redox-active cofactors such as ascorbate and gallate. By using electron paramagnetic resonance spectroscopy and single-crystal X-ray diffraction, the active site of GH61 is revealed to contain a type II copper and, uniquely, a methylated histidine in the copper's coordination sphere, thus providing an innovative paradigm in bioinorganic enzymatic catalysis.


Subject(s)
Biomass , Cellulose/metabolism , Copper/metabolism , Glycoside Hydrolases/metabolism , Metalloproteins/metabolism , Thermoascus/enzymology , Biocatalysis , Catalytic Domain , Cellulose/chemistry , Electron Spin Resonance Spectroscopy , Histidine/metabolism , Ions , Methylation , Models, Molecular , Oxidation-Reduction , Phosphoric Acids/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...