Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(7): e2215230120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36749722

ABSTRACT

The dorsal (DS) and ventral striatum (VS) receive dopaminergic projections that control motor functions and reward-related behavior. It remains poorly understood how dopamine release dynamics across different temporal scales in these regions are coupled to behavioral outcomes. Here, we employ the dopamine sensor dLight1.3b together with multiregion fiber photometry and machine learning-based analysis to decode dopamine dynamics across the striatum during self-paced exploratory behavior in mice. Our data show a striking coordination of rapidly fluctuating signal in the DS, carrying information across dopamine levels, with a slower signal in the VS, consisting mainly of slow-paced transients. Importantly, these release dynamics correlated with discrete behavioral motifs, such as turns, running, and grooming on a subsecond-to-minute time scale. Disruption of dopamine dynamics with cocaine caused randomization of action selection sequencing and disturbance of DS-VS coordination. The data suggest that distinct dopamine dynamics of DS and VS jointly encode behavioral sequences during unconstrained activity with DS modulating the stringing together of actions and VS the signal to initiate and sustain the selected action.


Subject(s)
Cocaine , Ventral Striatum , Mice , Animals , Dopamine , Reward
2.
Cell Rep ; 40(13): 111431, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170827

ABSTRACT

The nanoscopic organization and regulation of individual molecular components in presynaptic varicosities of neurons releasing modulatory volume neurotransmitters like dopamine (DA) remain largely elusive. Here we show, by application of several super-resolution microscopy techniques to cultured neurons and mouse striatal slices, that the DA transporter (DAT), a key protein in varicosities of dopaminergic neurons, exists in the membrane in dynamic equilibrium between an inward-facing nanodomain-localized and outward-facing unclustered configuration. The balance between these configurations is inversely regulated by excitatory drive and DA D2 autoreceptor activation in a manner dependent on Ca2+ influx via N-type voltage-gated Ca2+ channels. The DAT nanodomains contain tens of transporters molecules and overlap with nanodomains of PIP2 (phosphatidylinositol-4,5-bisphosphate) but show little overlap with D2 autoreceptor, syntaxin-1, and clathrin nanodomains. The data reveal a mechanism for rapid alterations of nanoscopic DAT distribution and show a striking link of this to the conformational state of the transporter.


Subject(s)
Autoreceptors , Dopamine Plasma Membrane Transport Proteins , Animals , Autoreceptors/metabolism , Clathrin/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Mice , Phosphatidylinositols/metabolism , Qa-SNARE Proteins/metabolism
3.
Article in English | MEDLINE | ID: mdl-30529002

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a psychiatric disorder characterized by inattention, aberrant impulsivity, and hyperactivity. Although the underlying pathophysiology of ADHD remains unclear, dopamine and norepinephrine signaling originating from the ventral tegmental area (VTA) and locus coeruleus (LC) is thought to be critically involved. In this study, we employ Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) together with the mouse 5-Choice Serial Reaction Time Task (5-CSRTT) to investigate the necessary roles of these catecholamines in ADHD-related behaviors, including attention, impulsivity, and motivation. By selective inhibition of tyrosine hydroxylase (TH)-positive VTA dopamine neurons expressing the Gi-coupled DREADD (hM4Di), we observed a marked impairment of effort-based motivation and subsequently speed and overall vigor of responding. At the highest clozapine N-oxide (CNO) dose tested (i.e. 2 mg/kg) to activate hM4Di, we detected a reduction in locomotor activity. DREADD-mediated inhibition of LC norepinephrine neurons reduced attentional performance in a variable stimulus duration test designed to increase task difficulty, specifically by increasing trials omissions, reducing mean score, and visual processing speed. These findings show that VTA dopamine and LC norepinephrine neurons differentially affect attention, impulsive and motivational control. In addition, this study highlights how molecular genetic probing of selective catecholamine circuits can provide valuable insights into the mechanisms underlying ADHD-relevant behaviors.


Subject(s)
Dopamine/metabolism , Neurons/metabolism , Norepinephrine/metabolism , Animals , Attention/drug effects , Attention/physiology , Genetic Techniques , Impulsive Behavior/drug effects , Impulsive Behavior/physiology , Male , Mice, Inbred C57BL , Mice, Transgenic , Motivation/drug effects , Motivation/physiology , Motor Activity/drug effects , Motor Activity/physiology , Neurons/drug effects , Neuropsychological Tests , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism
4.
eNeuro ; 5(3)2018.
Article in English | MEDLINE | ID: mdl-29938215

ABSTRACT

Dopamine plays a key role in the cellular and behavioral responses to drugs of abuse, but the implication of metabotropic regulatory input to dopaminergic neurons on acute drug effects and subsequent drug-related behavior remains unclear. Here, we used chemogenetics [Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)] to modulate dopamine signaling and activity before cocaine administration in mice. We show that chemogenetic inhibition of dopaminergic ventral tegmental area (VTA) neurons differentially affects locomotor and reward-related behavioral responses to cocaine. Stimulation of Gi-coupled DREADD (hM4Di) expressed in dopaminergic VTA neurons persistently reduced the locomotor response to repeated cocaine injections. An attenuated locomotor response was seen even when a dual-viral vector approach was used to restrict hM4Di expression to dopaminergic VTA neurons projecting to the nucleus accumbens. Surprisingly, despite the attenuated locomotor response, hM4Di-mediated inhibition of dopaminergic VTA neurons did not prevent cocaine sensitization, and the inhibitory effect of hM4Di-mediated inhibition was eliminated after withdrawal. In the conditioned place-preference paradigm, hM4Di-mediated inhibition did not affect cocaine-induced place preference; however, the extinction period was extended. Also, hM4Di-mediated inhibition had no effect on preference for a sugar-based reward over water but impaired motivation to work for the same reward in a touchscreen-based motivational assay. In addition, to support that VTA dopaminergic neurons operate as regulators of reward motivation toward both sugar and cocaine, our data suggest that repeated cocaine exposure leads to adaptations in the VTA that surmount the ability of Gi-signaling to suppress and regulate VTA dopaminergic neuronal activity.


Subject(s)
Cocaine/administration & dosage , Dopaminergic Neurons/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Locomotion , Reward , Ventral Tegmental Area/metabolism , Animals , Behavior, Animal/drug effects , Conditioning, Classical , Dopaminergic Neurons/drug effects , Drug-Seeking Behavior , Female , Male , Mice , Motivation , Signal Transduction , Ventral Tegmental Area/drug effects
5.
Basic Clin Pharmacol Toxicol ; 121(5): 373-381, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28609587

ABSTRACT

Attention is a fundamental cognitive process involved in nearly all aspects of life. Abnormal attentional control is a symptom of many neurological disorders, most notably recognized in ADHD (attention deficit hyperactivity disorder). Although attentional performance and its malfunction has been a major area of investigation, it has proven difficult to accurately associate specific neuronal projections, cell types, neurotransmitter systems and receptors with distinct phenotypes owing to its complexity. In this MiniReview, we present a recently invented technology known as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). The DREADD technology is an emerging and transformative method that allows selective manipulation of G protein-coupled receptor (GPCR) signalling, and its broad-ranging usefulness in attention research is now beginning to emerge. We first describe the different DREADDs available and explain how unprecedented specificity of neuronal signalling can be achieved using DREADDs. We next discuss various studies performed in animal models of visual attention, where different brain regions and neuronal populations have been probed by DREADDs. We highlight the interplay between the dopamine (DA) and noradrenaline (NA) catecholamine systems in visual attention and explain why DREADD technology can untangle and help us better understand such complex systems in normal and malfunctioning conditions.


Subject(s)
Attention/drug effects , Drug Design , Receptors, G-Protein-Coupled/drug effects , Animals , Attention/physiology , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/physiopathology , Brain/metabolism , Disease Models, Animal , Dopamine/metabolism , Humans , Norepinephrine/metabolism , Receptors, G-Protein-Coupled/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...