Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 323(1): 294-307, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17625074

ABSTRACT

Augmentation of nicotinic alpha7 receptor function is considered to be a potential therapeutic strategy aimed at ameliorating cognitive and mnemonic dysfunction in relation to debilitating pathological conditions, such as Alzheimer's disease and schizophrenia. In the present report, a novel positive allosteric modulator of the alpha7 nicotinic acetylcholine receptor (nAChR), 1-(5-chloro-2-hydroxy-phenyl)-3-(2-chloro-5-trifluoromethyl-phenyl)-urea (NS1738), is described. NS1738 was unable to displace or affect radioligand binding to the agonist binding site of nicotinic receptors, and it was devoid of effect when applied alone in electrophysiological paradigms. However, when applied in the presence of acetylcholine (ACh), NS1738 produced a marked increase in the current flowing through alpha7 nAChRs, as determined in both oocyte electrophysiology and patch-clamp recordings from mammalian cells. NS1738 acted by increasing the peak amplitude of ACh-evoked currents at all concentrations; thus, it increased the maximal efficacy of ACh. Oocyte experiments indicated an increase in ACh potency as well. NS1738 had only marginal effects on the desensitization kinetics of alpha7 nAChRs, as determined from patch-clamp studies of both transfected cells and cultured hippocampal neurons. NS1738 was modestly brain-penetrant, and it was demonstrated to counteract a (-)-scopolamine-induced deficit in acquisition of a water-maze learning task in rats. Moreover, NS1738 improved performance in the rat social recognition test to the same extent as (-)-nicotine, demonstrating that NS1738 is capable of producing cognitive enhancement in vivo. These data support the notion that alpha7 nAChR allosteric modulation may constitute a novel pharmacological principle for the treatment of cognitive dysfunction.


Subject(s)
Cholinergic Agents/pharmacology , Cognition/drug effects , Maze Learning/drug effects , Memory, Short-Term/drug effects , Phenylurea Compounds/pharmacokinetics , Receptors, Nicotinic/metabolism , Action Potentials/drug effects , Allosteric Regulation , Animals , Cell Line, Tumor , Cholinergic Agents/blood , Cholinergic Agents/pharmacokinetics , Cloning, Molecular , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Neurons/drug effects , Neurons/metabolism , Oocytes/metabolism , Patch-Clamp Techniques , Phenylurea Compounds/blood , Rats , Rats, Sprague-Dawley , Rats, Wistar , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor
2.
Biochim Biophys Acta ; 1665(1-2): 1-5, 2004 Oct 11.
Article in English | MEDLINE | ID: mdl-15471565

ABSTRACT

We have identified and characterized the compound NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) as a potent activator of human Ca2+ -activated K+ channels of SK and IK types, whereas it is devoid of effect on BK type channels. IK- and SK-channels have previously been reported to be activated by the benzimidazolinone, 1-EBIO and more potently by its dichloronated-analogue, DC-EBIO. NS309 is at least 1000 times more potent than 1-EBIO and at least 30 times more potent than DC-EBIO when the compounds are compared on the same cell.


Subject(s)
Indoles/pharmacology , Oximes/pharmacology , Potassium Channels, Calcium-Activated/drug effects , Benzimidazoles/pharmacology , Calcium Channel Agonists/pharmacology , Cell Line , Dose-Response Relationship, Drug , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels , Kinetics , Patch-Clamp Techniques , Potassium Channels, Calcium-Activated/metabolism , Small-Conductance Calcium-Activated Potassium Channels
3.
J Pharmacol Exp Ther ; 309(3): 1003-10, 2004 Jun.
Article in English | MEDLINE | ID: mdl-14985418

ABSTRACT

Accumulating preclinical data suggest that compounds that block the excitatory effect of glutamate on the kainate subtype of glutamate receptors may have utility for the treatment of pain, migraine, and epilepsy. In the present study, the in vitro pharmacological properties of the novel glutamate antagonist 5-carboxyl-2,4-di-benzamido-benzoic acid (NS3763) are described. In functional assays in human embryonic kidney (HEK)293 cells expressing homomeric GLU(K5) or GLU(K6) receptors, NS3763 is shown to display selectivity for inhibition of domoate-induced increase in intracellular calcium mediated through the GLU(K5) subtype (IC(50) = 1.6 microM) of kainate receptors compared with the GLU(K6) subtype (IC(50) > 30 microM). NS3763 inhibits the GLU(K5)-mediated response in a noncompetitive manner and does not inhibit [(3)H]alpha-amino-3-hydroxy-5-tertbutylisoxazole-4-propionic acid binding to GLU(K5) receptors. Furthermore, NS3763 selectively inhibits l-glutamate- and domoate-evoked currents through GLU(K5) receptors in HEK293 cells and does not significantly inhibit alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid- or N-methyl-d-aspartate-induced currents in cultured mouse cortical neurons at 30 microM. This is the first report on a selective and noncompetitive GLU(K5) antagonist.


Subject(s)
Benzamides/pharmacology , Benzoates/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Receptors, Kainic Acid/antagonists & inhibitors , Animals , Calcium/metabolism , Cells, Cultured , Humans , Mice , Receptors, AMPA/drug effects , Receptors, AMPA/metabolism , Receptors, Kainic Acid/physiology , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , GluK2 Kainate Receptor
SELECTION OF CITATIONS
SEARCH DETAIL