Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
J Cell Mol Med ; 26(3): 671-683, 2022 02.
Article in English | MEDLINE | ID: mdl-35040264

ABSTRACT

Our previous work using a melanoma progression model composed of melanocytic cells (melanocytes, primary and metastatic melanoma samples) demonstrated various deregulated genes, including a few known lncRNAs. Further analysis was conducted to discover novel lncRNAs associated with melanoma, and candidates were prioritized for their potential association with invasiveness or other metastasis-related processes. In this sense, we found the intergenic lncRNA U73166 (ENSG00000230454) and decided to explore its effects in melanoma. For that, we silenced the lncRNA U73166 expression using shRNAs in a melanoma cell line. Next, we experimentally investigated its functions and found that migration and invasion had significantly decreased in knockdown cells, indicating an essential association of lncRNA U73166 for cancer processes. Additionally, using naïve and vemurafenib-resistant cell lines and data from a patient before and after resistance, we found that vemurafenib-resistant samples had a higher expression of lncRNA U73166. Also, we retrieved data from the literature that indicates lncRNA U73166 may act as a mediator of RNA processing and cell invasion, probably inducing a more aggressive phenotype. Therefore, our results suggest a relevant role of lncRNA U73166 in metastasis development. We also pointed herein the lncRNA U73166 as a new possible biomarker or target to help overcome clinical vemurafenib resistance.


Subject(s)
Melanoma , RNA, Long Noncoding , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Neoplasm Invasiveness/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Up-Regulation/genetics , Vemurafenib/pharmacology
2.
Braz J Microbiol ; 52(2): 491-501, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33651333

ABSTRACT

Filamentous fungus Purpureocillium lilacinum is an emerging pathogen that infects immunocompromised and immunocompetent individuals and is resistant to several azole molecules. Although azole resistance mechanisms are well studied in Aspergillus sp. and Candida sp., there are no studies to date reporting P. lilacinum molecular response to these molecules. The aim of this study was to describe P. lilacinum molecular mechanisms involved in antifungal response against fluconazole and itraconazole. Transcriptomic analyses showed that gene expression modulation takes place when P. lilacinum is challenged for 12 h with fluconazole (64 µg/mL) or itraconazole (16 µg/mL). The antifungals acted on the ergosterol biosynthesis pathway, and two homologous genes coding for cytochrome P450 51 enzymes were upregulated. Genes coding for efflux pumps, such as the major facilitator superfamily transporter, also displayed increased expression in the treated samples. We propose that P. lilacinum develops antifungal responses by raising the expression levels of cytochrome P450 enzymes and efflux pumps. Such modulation could confer P. lilacinum high levels of target enzymes and could lead to the constant withdrawal of antifungals, which would force an increase in the administration of antifungal medications to achieve fungal morbidity or mortality. The findings in this work could aid in the decision-making for treatment strategies in cases of P. lilacinum infection.


Subject(s)
Antifungal Agents/pharmacology , Fluconazole/pharmacology , Hypocreales/drug effects , Hypocreales/genetics , Itraconazole/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Drug Resistance, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/drug effects , Humans , Hypocreales/metabolism , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology , Transcriptome/drug effects
3.
Hematol., Transfus. Cell Ther. (Impr.) ; 43(1): 28-34, Jan.-Mar. 2021. tab, graf, ilus
Article in English | LILACS | ID: biblio-1154296

ABSTRACT

ABSTRACT Aberrant expression of long non-coding RNAs (lncRNAs) has been detected in several types of cancer, including acute lymphoblastic leukemia (ALL), but lncRNA mapped on transcribed ultraconserved regions (T-UCRs) are little explored. The T-UCRs uc.112, uc.122, uc.160 and uc.262 were evaluated by quantitative real-time PCR in bone marrow samples from children with T-ALL (n = 32) and common-ALL/pre-B ALL (n = 30). In pediatric ALL, higher expression levels of uc.112 were found in patients with T-ALL, compared to patients with B-ALL. T-cells did not differ significantly from B-cells regarding uc.112 expression in non-tumor precursors from public data. Additionally, among B-ALL patients, uc.112 was also found to be increased in patients with hyperdiploidy, compared to other karyotype results. The uc.122, uc.160, and uc.262 were not associated with biological or clinical features. These findings suggest a potential role of uc.112 in pediatric ALL and emphasize the need for further investigation of T-UCR in pediatric ALL.


Subject(s)
Humans , Female , Diploidy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Bone Marrow , Polymerase Chain Reaction
4.
Hematol Transfus Cell Ther ; 43(1): 28-34, 2021.
Article in English | MEDLINE | ID: mdl-32014474

ABSTRACT

Aberrant expression of long non-coding RNAs (lncRNAs) has been detected in several types of cancer, including acute lymphoblastic leukemia (ALL), but lncRNA mapped on transcribed ultraconserved regions (T-UCRs) are little explored. The T-UCRs uc.112, uc.122, uc.160 and uc.262 were evaluated by quantitative real-time PCR in bone marrow samples from children with T-ALL (n=32) and common-ALL/pre-B ALL (n=30). In pediatric ALL, higher expression levels of uc.112 were found in patients with T-ALL, compared to patients with B-ALL. T-cells did not differ significantly from B-cells regarding uc.112 expression in non-tumor precursors from public data. Additionally, among B-ALL patients, uc.112 was also found to be increased in patients with hyperdiploidy, compared to other karyotype results. The uc.122, uc.160, and uc.262 were not associated with biological or clinical features. These findings suggest a potential role of uc.112 in pediatric ALL and emphasize the need for further investigation of T-UCR in pediatric ALL.

5.
PLoS One ; 15(11): e0241861, 2020.
Article in English | MEDLINE | ID: mdl-33156842

ABSTRACT

Macrophages are classified upon activation as classical activated M1 and M2 anti-inflammatory regulatory populations. This macrophage polarization is well characterized in humans and mice, but M1/M2 profile in cattle has been far less explored. Bos primigenius taurus (taurine) and Bos primigenius indicus (indicine) cattle display contrasting levels of resistance to infection and parasitic diseases such as C57BL/6J and Balb/c murine experimental models of parasite infection outcomes based on genetic background. Thus, we investigated the differential gene expression profile of unstimulated and LPS stimulated monocyte-derived macrophages (MDMs) from Holstein (taurine) and Gir (indicine) breeds using RNA sequencing methodology. For unstimulated MDMs, the contrast between Holstein and Gir breeds identified 163 Differentially Expressed Genes (DEGs) highlighting the higher expression of C-C chemokine receptor type five (CCR5) and BOLA-DQ genes in Gir animals. LPS-stimulated MDMs from Gir and Holstein animals displayed 1,257 DEGs enriched for cell adhesion and inflammatory responses. Gir MDMs cells displayed a higher expression of M1 related genes like Nitric Oxide Synthase 2 (NOS2), Toll like receptor 4 (TLR4), Nuclear factor NF-kappa-B 2 (NFKB2) in addition to higher levels of transcripts for proinflammatory cytokines, chemokines, complement factors and the acute phase protein Serum Amyloid A (SAA). We also showed that gene expression of inflammatory M1 population markers, complement and SAA genes was higher in Gir in buffy coat peripheral cells in addition to nitric oxide concentration in MDMs supernatant and animal serum. Co-expression analyses revealed that Holstein and Gir animals showed different transcriptional signatures in the MDMs response to LPS that impact on cell cycle regulation, leukocyte migration and extracellular matrix organization biological processes. Overall, the results suggest that Gir animals show a natural propensity to generate a more pronounced M1 inflammatory response than Holstein, which might account for a faster immune response favouring resistance to many infection diseases.


Subject(s)
Breeding , Cattle , Gene Expression Profiling/veterinary , Gene Regulatory Networks/drug effects , Lipopolysaccharides/pharmacology , Macrophages/chemistry , Animals , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Lipopolysaccharides/adverse effects , Macrophage Activation , Macrophages/drug effects , Reactive Oxygen Species/metabolism , Sequence Analysis, RNA/veterinary , Species Specificity
6.
Mem Inst Oswaldo Cruz ; 115: e190501, 2020.
Article in English | MEDLINE | ID: mdl-33174908

ABSTRACT

BACKGROUND: Non-human primates contribute to the spread of the yellow fever virus (YFV) and the establishment of transmission cycles in endemic areas. OBJECTIVE: To describe the severe histopathological aspects of YFV infection, 10 squirrel monkeys were infected with YFV and blood, brain, liver, kidney, spleen, heart, lung, lymph node and stomach were collected at 1-7, 10, 20 and 30 days post-infection (dpi). METHODS: Histopathological analysis and detection of the genome and viral antigens and neutralising antibodies were performed by RT-PCR, immunohistochemistry and neutralisation test, respectively. FINDINGS: Only one animal died from the experimental infection. The genome and viral antigens were detected in all investigated organs (1-30 dpi) and the neutralising antibodies from seven to 30 dpi. The brain contained perivascular haemorrhage (6 dpi); in the liver, midzonal haemorrhage and lytic necrosis (6 dpi) were observed. The kidney had bleeding in the Bowman's capsule and tubular necrosis (6 dpi). Pyknotic lymphocytes were observed in the spleen (1-20 dpi), the lung had haemorrhage (2-6 dpi), in the endocardium it contained nuclear pyknosis and necrosis (2-3 dpi) and the stomach contained blood in the lumen (6 dpi). MAIN FINDINGS: Squirrel monkeys reliably reproduced the responses observed in human cases of yellow fever and, therefore, constitute an excellent experimental model for studies on the pathophysiology of the disease.


Subject(s)
Saimiri/virology , Yellow Fever/diagnosis , Yellow fever virus/isolation & purification , Animals , Disease Models, Animal
8.
Cell Metab ; 32(3): 437-446.e5, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32697943

ABSTRACT

COVID-19 can result in severe lung injury. It remained to be determined why diabetic individuals with uncontrolled glucose levels are more prone to develop the severe form of COVID-19. The molecular mechanism underlying SARS-CoV-2 infection and what determines the onset of the cytokine storm found in severe COVID-19 patients are unknown. Monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 patients and appear to have a central role in the pathogenicity of the disease. These cells adapt their metabolism upon infection and become highly glycolytic, which facilitates SARS-CoV-2 replication. The infection triggers mitochondrial ROS production, which induces stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism by SARS-CoV-2 infection directly inhibit T cell response and reduce epithelial cell survival. Targeting HIF-1ɑ may have great therapeutic potential for the development of novel drugs to treat COVID-19.


Subject(s)
Betacoronavirus/physiology , Blood Glucose/metabolism , Coronavirus Infections/complications , Diabetes Complications/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Monocytes/metabolism , Pneumonia, Viral/complications , Adult , COVID-19 , Cell Line , Coronavirus Infections/metabolism , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Female , Glycolysis , Humans , Inflammation/complications , Inflammation/metabolism , Male , Middle Aged , Monocytes/virology , Pandemics , Pneumonia, Viral/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Signal Transduction
9.
Mem. Inst. Oswaldo Cruz ; 115: e190501, 2020. graf
Article in English | LILACS, Sec. Est. Saúde SP | ID: biblio-1135279

ABSTRACT

BACKGROUND Non-human primates contribute to the spread of the yellow fever virus (YFV) and the establishment of transmission cycles in endemic areas. OBJECTIVE To describe the severe histopathological aspects of YFV infection, 10 squirrel monkeys were infected with YFV and blood, brain, liver, kidney, spleen, heart, lung, lymph node and stomach were collected at 1-7, 10, 20 and 30 days post-infection (dpi). METHODS Histopathological analysis and detection of the genome and viral antigens and neutralising antibodies were performed by RT-PCR, immunohistochemistry and neutralisation test, respectively. FINDINGS Only one animal died from the experimental infection. The genome and viral antigens were detected in all investigated organs (1-30 dpi) and the neutralising antibodies from seven to 30 dpi. The brain contained perivascular haemorrhage (6 dpi); in the liver, midzonal haemorrhage and lytic necrosis (6 dpi) were observed. The kidney had bleeding in the Bowman's capsule and tubular necrosis (6 dpi). Pyknotic lymphocytes were observed in the spleen (1-20 dpi), the lung had haemorrhage (2-6 dpi), in the endocardium it contained nuclear pyknosis and necrosis (2-3 dpi) and the stomach contained blood in the lumen (6 dpi). MAIN FINDINGS Squirrel monkeys reliably reproduced the responses observed in human cases of yellow fever and, therefore, constitute an excellent experimental model for studies on the pathophysiology of the disease.


Subject(s)
Animals , Saimiri/virology , Yellow Fever/diagnosis , Yellow fever virus/isolation & purification , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...