Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
eNeuro ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388443

ABSTRACT

The type I transmembrane protein BT-IgSF is predominantly localized in the brain and testes. It belongs to the CAR subgroup of Ig cell adhesion proteins, that are hypothesized to regulate connexin expression or localization. Here, we studied the putative link between BT-IgSF and connexins in astrocytes, ependymal cells and neurons of the mouse. Global knockout of BT-IgSF caused an increase in the clustering of connexin43 (Gja1), but not of connexin30 (Gjb6), on astrocytes and ependymal cells. Additionally, knockout animals displayed reduced expression levels of connexin43 protein in the cortex and hippocampus. Importantly, analysis of biocytin spread in hippocampal or cortical slices from mature mice of either sex revealed a decrease in astrocytic cell-cell coupling in the absence of BT-IgSF. Blocking either protein biosynthesis or proteolysis showed that the lysosomal pathway increased connexin43 degradation in astrocytes. Localization of connexin43 in subcellular compartments was not impaired in astrocytes of BT-IgSF mutants. In contrast to connexin43 the localization and expression of connexin36 (Gjd2) on neurons was not affected by the absence of BT-IgSF. Overall, our data indicate that the IgCAM BT-IgSF is essential for correct gap junction-mediated astrocyte-to-astrocyte cell communication.Significance Statement Astrocytes regulate a variety of physiological processes in the developing and adult brain that are essential for proper brain function. Astrocytes form extensive networks in the brain and communicate via gap junctions. Disruptions of gap junction coupling are found in several diseases such as neurodegeneration or epilepsy. Here, we demonstrate that the cell adhesion protein BT-IgSF is essential for gap junction mediated coupling between astrocytes in the cortex and hippocampus.

2.
Glia ; 71(8): 2024-2044, 2023 08.
Article in English | MEDLINE | ID: mdl-37140003

ABSTRACT

Astrocytes constitute the parenchymal border of the blood-brain barrier (BBB), modulate the exchange of soluble and cellular elements, and are essential for neuronal metabolic support. Thus, astrocytes critically influence neuronal network integrity. In hypoxia, astrocytes upregulate a transcriptional program that has been shown to boost neuroprotection in several models of neurological diseases. We investigated transgenic mice with astrocyte-specific activation of the hypoxia-response program by deleting the oxygen sensors, HIF prolyl-hydroxylase domains 2 and 3 (Phd2/3). We induced astrocytic Phd2/3 deletion after onset of clinical signs in experimental autoimmune encephalomyelitis (EAE) that led to an exacerbation of the disease mediated by massive immune cell infiltration. We found that Phd2/3-ko astrocytes, though expressing a neuroprotective signature, exhibited a gradual loss of gap-junctional Connexin-43 (Cx43), which was induced by vascular endothelial growth factor-alpha (Vegf-a) expression. These results provide mechanistic insights into astrocyte biology, their critical role in hypoxic states, and in chronic inflammatory CNS diseases.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Animals , Mice , Astrocytes/metabolism , Neuroinflammatory Diseases , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia/metabolism , Prolyl Hydroxylases/metabolism , Procollagen-Proline Dioxygenase/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
3.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982793

ABSTRACT

The immunoglobulin-like cell adhesion molecule CLMP is a member of the CAR family of cell adhesion proteins and is implicated in human congenital short-bowel syndrome (CSBS). CSBS is a rare but very severe disease for which no cure is currently available. In this review, we compare data from human CSBS patients and a mouse knockout model. These data indicate that CSBS is characterized by a defect in intestinal elongation during embryonic development and impaired peristalsis. The latter is driven by uncoordinated calcium signaling via gap junctions, which is linked to a reduction in connexin43 and 45 levels in the circumferential smooth muscle layer of the intestine. Furthermore, we discuss how mutations in the CLMP gene affect other organs and tissues, including the ureter. Here, the absence of CLMP produces a severe bilateral hydronephrosis-also caused by a reduced level of connexin43 and associated uncoordinated calcium signaling via gap junctions.


Subject(s)
Connexin 43 , Intestinal Pseudo-Obstruction , Animals , Mice , Humans , Connexin 43/genetics , Connexin 43/metabolism , Cell Adhesion , Coxsackie and Adenovirus Receptor-Like Membrane Protein , Cell Adhesion Molecules/metabolism
4.
Exp Mol Med ; 55(3): 643-652, 2023 03.
Article in English | MEDLINE | ID: mdl-36941462

ABSTRACT

The coxsackievirus and adenovirus receptor (CAR) mediates homo- and heterotopic interactions between neighboring cardiomyocytes at the intercalated disc. CAR is upregulated in the hypoxic areas surrounding myocardial infarction (MI). To elucidate whether CAR contributes to hypoxia signaling and MI pathology, we used a gain- and loss-of-function approach in transfected HEK293 cells, H9c2 cardiomyocytes and CAR knockout mice. CAR overexpression increased RhoA activity, HIF-1α expression and cell death in response to chemical and physical hypoxia. In vivo, we subjected cardiomyocyte-specific CAR knockout (KO) and wild-type mice (WT) to coronary artery ligation. Survival was drastically improved in KO mice with largely preserved cardiac function as determined by echocardiography. Histological analysis revealed a less fibrotic, more compact lesion. Thirty days after MI, there was no compensatory hypertrophy or reduced cardiac output in hearts from CAR KO mice, in contrast to control mice with increased heart weight and reduced ejection fraction as signs of the underlying pathology. Based on these findings, we suggest CAR as a therapeutic target for the improved future treatment or prevention of myocardial infarction.


Subject(s)
Myocardial Infarction , Mice , Animals , Humans , HEK293 Cells , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Hypoxia/metabolism , Mice, Knockout
5.
Life (Basel) ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36675963

ABSTRACT

The IgCAM coxsackie-adenovirus receptor (CAR) is essential for embryonic heart development and electrical conduction in the mature heart. However, it is not well-understood how CAR exerts these effects at the cellular level. To address this question, we analyzed the spontaneous beating of cultured embryonic hearts and cardiomyocytes from wild type and CAR knockout (KO) embryos. Surprisingly, in the absence of the CAR, cultured cardiomyocytes showed increased frequencies of beating and calcium cycling. Increased beatings of heart organ cultures were also induced by the application of reagents that bind to the extracellular region of the CAR, such as the adenovirus fiber knob. However, the calcium cycling machinery, including calcium extrusion via SERCA2 and NCX, was not disrupted in CAR KO cells. In contrast, CAR KO cardiomyocytes displayed size increases but decreased in the total numbers of membrane-localized Cx43 clusters. This was accompanied by improved cell-cell coupling between CAR KO cells, as demonstrated by increased intercellular dye diffusion. Our data indicate that the CAR may modulate the localization and oligomerization of Cx43 at the plasma membrane, which could in turn influence electrical propagation between cardiomyocytes via gap junctions.

6.
Sci Transl Med ; 13(622): eabe8952, 2021 12.
Article in English | MEDLINE | ID: mdl-34851694

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is prevalent and deadly, but so far, there is no targeted therapy. A main contributor to the disease is impaired ventricular filling, which we improved with antisense oligonucleotides (ASOs) targeting the cardiac splice factor RBM20. In adult mice with increased wall stiffness, weekly application of ASOs over 2 months increased expression of compliant titin isoforms and improved cardiac function as determined by echocardiography and conductance catheter. RNA sequencing confirmed RBM20-dependent isoform changes and served as a sensitive indicator of potential side effects, largely limited to genes related to the immune response. We validated our approach in human engineered heart tissue, showing down-regulation of RBM20 to less than 50% within 3 weeks of treatment with ASOs, resulting in adapted relaxation kinetics in the absence of cardiac pathology. Our data suggest anti-RBM20 ASOs as powerful cardiac splicing regulators for the causal treatment of human HFpEF.


Subject(s)
Heart Failure , Animals , Diastole , Heart , Heart Ventricles , Humans , Mice , RNA-Binding Proteins/metabolism , Stroke Volume
7.
Nat Commun ; 12(1): 1929, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33771987

ABSTRACT

Leigh syndrome (LS) is a severe manifestation of mitochondrial disease in children and is currently incurable. The lack of effective models hampers our understanding of the mechanisms underlying the neuronal pathology of LS. Using patient-derived induced pluripotent stem cells and CRISPR/Cas9 engineering, we developed a human model of LS caused by mutations in the complex IV assembly gene SURF1. Single-cell RNA-sequencing and multi-omics analysis revealed compromised neuronal morphogenesis in mutant neural cultures and brain organoids. The defects emerged at the level of neural progenitor cells (NPCs), which retained a glycolytic proliferative state that failed to instruct neuronal morphogenesis. LS NPCs carrying mutations in the complex I gene NDUFS4 recapitulated morphogenesis defects. SURF1 gene augmentation and PGC1A induction via bezafibrate treatment supported the metabolic programming of LS NPCs, leading to restored neuronal morphogenesis. Our findings provide mechanistic insights and suggest potential interventional strategies for a rare mitochondrial disease.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Leigh Disease/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Mutation , Neurons/metabolism , Organoids/metabolism , Cells, Cultured , Child, Preschool , Humans , Induced Pluripotent Stem Cells/cytology , Leigh Disease/metabolism , Male , Metabolomics/methods , Mitochondria/genetics , Mitochondria/metabolism , Morphogenesis/genetics , Neurons/cytology , Proteomics/methods , Single-Cell Analysis/methods , Exome Sequencing
8.
Proc Natl Acad Sci U S A ; 116(50): 25126-25136, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31757849

ABSTRACT

Cardiac protein homeostasis, sarcomere assembly, and integration of titin as the sarcomeric backbone are tightly regulated to facilitate adaptation and repair. Very little is known on how the >3-MDa titin protein is synthesized, moved, inserted into sarcomeres, detached, and degraded. Here, we generated a bifluorescently labeled knockin mouse to simultaneously visualize both ends of the molecule and follow titin's life cycle in vivo. We find titin mRNA, protein synthesis and degradation compartmentalized toward the Z-disk in adult, but not embryonic cardiomyocytes. Originating at the Z-disk, titin contributes to a soluble protein pool (>15% of total titin) before it is integrated into the sarcomere lattice. Titin integration, disintegration, and reintegration are stochastic and do not proceed sequentially from Z-disk to M-band, as suggested previously. Exchange between soluble and integrated titin depends on titin protein composition and differs between individual cardiomyocytes. Thus, titin dynamics facilitate embryonic vs. adult sarcomere remodeling with implications for cardiac development and disease.


Subject(s)
Myocytes, Cardiac/metabolism , Protein Kinases , Proteostasis/physiology , Animals , Mice , Mice, Transgenic , Microscopy , Protein Kinases/genetics , Protein Kinases/metabolism , Sarcomeres/metabolism , Single-Cell Analysis
9.
Sci Rep ; 9(1): 6768, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043663

ABSTRACT

The Coxsackievirus and adenovirus receptor (CAR) is essential for normal electrical conductance in the heart, but its role in the postnatal brain is largely unknown. Using brain specific CAR knockout mice (KO), we discovered an unexpected role of CAR in neuronal communication. This includes increased basic synaptic transmission at hippocampal Schaffer collaterals, resistance to fatigue, and enhanced long-term potentiation. Spontaneous neurotransmitter release and speed of endocytosis are increased in KOs, accompanied by increased expression of the exocytosis associated calcium sensor synaptotagmin 2. Using proximity proteomics and binding studies, we link CAR to the exocytosis machinery as it associates with syntenin and synaptobrevin/VAMP2 at the synapse. Increased synaptic function does not cause adverse effects in KO mice, as behavior and learning are unaffected. Thus, unlike the connexin-dependent suppression of atrioventricular conduction in the cardiac knockout, communication in the CAR deficient brain is improved, suggesting a role for CAR in presynaptic processes.


Subject(s)
Brain/physiology , Cell Adhesion , Coxsackie and Adenovirus Receptor-Like Membrane Protein/physiology , Exocytosis , Synapses/physiology , Synaptic Transmission , Synaptic Vesicles/physiology , Animals , Behavior, Animal , Long-Term Potentiation , Mice , Mice, Knockout , Neurons/cytology , Neurons/physiology
10.
Hum Mol Genet ; 28(24): 4043-4052, 2019 12 15.
Article in English | MEDLINE | ID: mdl-29893868

ABSTRACT

Mutations in the lamin A/C gene (LMNA) cause an autosomal dominant inherited form of dilated cardiomyopathy associated with cardiac conduction disease (hereafter referred to as LMNA cardiomyopathy). Compared with other forms of dilated cardiomyopathy, mutations in LMNA are responsible for a more aggressive clinical course owing to a high rate of malignant ventricular arrhythmias. Gap junctions are intercellular channels that allow direct communication between neighboring cells, which are involved in electrical impulse propagation and coordinated contraction of the heart. For gap junctions to properly control electrical synchronization in the heart, connexin-based hemichannels must be correctly targeted to intercalated discs, Cx43 being the major connexin in the working myocytes. We here showed an altered distribution of Cx43 in a mouse model of LMNA cardiomyopathy. However, little is known on the molecular mechanisms of Cx43 remodeling in pathological context. We now show that microtubule cytoskeleton alteration and decreased acetylation of α-tubulin lead to remodeling of Cx43 in LMNA cardiomyopathy, which alters the correct communication between cardiomyocytes, ultimately leading to electrical conduction disturbances. Preventing or reversing this process could offer a strategy to repair damaged heart. Stabilization of microtubule cytoskeleton using Paclitaxel improved intraventricular conduction defects. These results indicate that microtubule cytoskeleton contributes to the pathogenesis of LMNA cardiomyopathy and that drugs stabilizing the microtubule may be beneficial for patients.


Subject(s)
Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Connexin 43/metabolism , Lamin Type A/genetics , Paclitaxel/pharmacology , Acetylation/drug effects , Animals , Cardiac Conduction System Disease/genetics , Cardiomyopathies/pathology , Connexin 43/genetics , Cytoskeleton/metabolism , Cytoskeleton/pathology , Gap Junctions/drug effects , Gap Junctions/metabolism , Gap Junctions/pathology , Lamin Type A/metabolism , Male , Mice , Mice, Knockout , Microtubules/metabolism , Microtubules/pathology , Mutation , Myocardium/pathology , Myocytes, Cardiac/pathology
11.
Dev Biol ; 445(1): 54-67, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30385274

ABSTRACT

The role of agrin, Lrp4 and MuSK, key organizers of neuromuscular synaptogenesis, in the developing CNS is only poorly understood. We investigated the role of these proteins in cultured mouse embryonic cortical neurons from wildtype and from Lrp4- and MuSK-deficient mice. Neurons from Lrp4-deficient mice had fewer but longer primary dendrites and a decreased density of puncta containing excitatory and inhibitory synapse-associated proteins. Neurons from MuSK-deficient mice had an altered dendritic branching pattern but no change in the density of puncta stained by antibodies against synapse-associated proteins. Transfection of TM-agrin compensated the dendritic branching deficits in Lrp4-deficient but not in MuSK-deficient neurons. TM-agrin transfection increased the density of excitatory synaptic puncta in MuSK-deficient but not in Lrp4-deficient mice and reduced the number of inhibitory synaptic puncta irrespective of MuSK and Lrp4 expression. Addition of purified soluble agrin to microisland cultures of cortical neurons revealed an Lrp4-dependent increase in the size and density of glutamatergic synaptic puncta and in mEPSC but not in mIPSC frequency and amplitude. Thus, agrin induced an Lrp4-independent increase in dendritic branch complexity, an Lrp4-dependent increase of excitatory synaptic puncta and an Lrp4- and MuSK-independent decrease in the density of puncta containing inhibitory synapse-associated proteins. These results establish selective roles for agrin, Lrp4 and MuSK during dendritogenesis and synaptogenesis in cultured CNS neurons.


Subject(s)
Agrin/metabolism , Neuromuscular Junction/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, LDL/metabolism , Synapses/metabolism , Animals , Cell Line , Cells, Cultured , Central Nervous System/pathology , Dendrites/metabolism , Female , LDL-Receptor Related Proteins , Male , Mice , Mice, Inbred C57BL , Neurogenesis
12.
EMBO J ; 37(17)2018 09 03.
Article in English | MEDLINE | ID: mdl-30049711

ABSTRACT

Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low-affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin-positive (PV) interneurons. Nrg3 and ErbB4 are located pre- and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short-term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4+ interneurons and affects short-term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non-neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4+ interneurons.


Subject(s)
Hippocampus/metabolism , Interneurons/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nerve Net/metabolism , Neuronal Plasticity , Synapses/metabolism , Animals , Hippocampus/cytology , Interneurons/cytology , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Transgenic , Nerve Net/cytology , Neuregulins , Receptor, ErbB-4/genetics , Receptor, ErbB-4/metabolism , Synapses/genetics
13.
Dis Model Mech ; 11(2)2018 02 22.
Article in English | MEDLINE | ID: mdl-29361518

ABSTRACT

CAR-like membrane protein (CLMP), an immunoglobulin cell adhesion molecule (IgCAM), has been implicated in congenital short-bowel syndrome in humans, a condition with high mortality for which there is currently no cure. We therefore studied the function of CLMP in a Clmp-deficient mouse model. Although we found that the levels of mRNAs encoding Connexin43 or Connexin45 were not or were only marginally affected, respectively, by Clmp deficiency, the absence of CLMP caused a severe reduction of both proteins in smooth muscle cells of the intestine and of Connexin43 in the ureter. Analysis of calcium signaling revealed a disordered cell-cell communication between smooth muscle cells, which in turn induced an impaired and uncoordinated motility of the intestine and the ureter. Consequently, insufficient transport of chyme and urine caused a fatal delay to thrive, a high rate of mortality, and provoked a severe hydronephrosis in CLMP knockouts. Neurotransmission and the capability of smooth muscle cells to contract in ring preparations of the intestine were not altered. Physical obstructions were not detectable and an overall normal histology in the intestine as well as in the ureter was observed, except for a slight hypertrophy of smooth muscle layers. Deletion of Clmp did not lead to a reduced length of the intestine as shown for the human CLMP gene but resulted in gut malrotations. In sum, the absence of CLMP caused functional obstructions in the intestinal tract and ureter by impaired peristaltic contractions most likely due to a lack of gap-junctional communication between smooth muscle cells.


Subject(s)
Connexin 43/metabolism , Connexins/metabolism , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Intestines/physiology , Muscle Contraction , Muscle, Smooth/physiology , Ureter/physiology , Animals , Body Weight , Calcium Signaling , Cell Communication , Coxsackie and Adenovirus Receptor-Like Membrane Protein/deficiency , Female , Humans , Hydronephrosis/pathology , Intestines/cytology , Intestines/ultrastructure , Mice, Inbred C57BL , Myocytes, Smooth Muscle/metabolism , Peristalsis , Survival Analysis , Synaptic Transmission
14.
Mol Cell Neurosci ; 81: 32-40, 2017 06.
Article in English | MEDLINE | ID: mdl-27871939

ABSTRACT

The immunoglobulin superfamily represents a diverse set of cell-cell contact proteins and includes well-studied members such as NCAM1, DSCAM, L1 or the contactins which are strongly expressed in the nervous system. In this review we put our focus on the biological function of a less understood subgroup of Ig-like proteins composed of CAR (coxsackievirus and adenovirus receptor), CLMP (CAR-like membrane protein) and BT-IgSF (brain and testis specific immunoglobulin superfamily). The CAR-related proteins are type I transmembrane proteins containing an N-terminal variable (V-type) and a membrane proximal constant (C2-type) Ig domain in their extracellular region which are implicated in homotypic adhesion. They are highly expressed during embryonic development in a variety of tissues including the nervous system whereby in adult stages the protein level of CAR and CLMP decreases, only BT-IgSF expression increases within age. CAR-related proteins are concentrated at specialized cell-cell communication sites such as gap or tight junctions and are present at the plasma membrane in larger protein complexes. Considerable progress has been made on the molecular structure and interactions of CAR while research on CLMP and BT-IgSF is at an early stage. Studies on mouse mutants revealed biological functions of CAR in the heart and for CLMP in the gastrointestinal and urogenital systems. Furthermore, CAR and BT-IgSF appear to regulate synaptic function in the hippocampus.


Subject(s)
Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Cell Communication , Immunoglobulins/metabolism , Animals , Antigens, CD/chemistry , Antigens, CD/genetics , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Humans , Immunoglobulins/chemistry , Immunoglobulins/genetics , Neoplasms/genetics
15.
Adv Neurobiol ; 8: 21-45, 2014.
Article in English | MEDLINE | ID: mdl-25300131

ABSTRACT

The coxsackie-adenovirus receptor (CAR) is the prototype of a small subfamily of IgCAMs composed of CAR itself, CLMP, BT-IgSF, ESAM, CTX, and A33. These six proteins are composed of one V-set and one C2-set Ig domains and a single transmembrane helix followed by a cytoplasmic stretch. They are localized in several tissues and organs and--except for ESAM, CTX, and A33--are expressed in the developing brain. CAR becomes downregulated at early postnatal stages and is absent from the adult brain. CAR, CLMP, and BT-IgSF mediate homotypic aggregation. Interestingly, cell adhesion experiments, binding studies, and crystallographic investigations on the extracellular domain reveal a flexible ectodomain for CAR that mediates homophilic and heterophilic binding. CAR has been extensively investigated in the context of gene therapy and diseases, while research on BT-IgSF and CLMP is at an early stage. Several mouse models as well as studies on patient tissues revealed an essential role for CAR in (1) the development of cardiac, renal, lymphatic, and intestinal tissue; (2) muscle pathology, remodeling, and regeneration; (3) tumor genesis/suppression and metastatic progression; and (4) in virus-mediated infections and gene therapy. Although the in vivo function of CAR in the brain has not been solved its developmentally regulated expression pattern in the brain as well as its function as CAM suggests that CAR might be implicated in neuronal network formation.


Subject(s)
Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/metabolism , Coxsackie and Adenovirus Receptor-Like Membrane Protein/chemistry , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Immunoglobulins/chemistry , Immunoglobulins/metabolism , Animals , Cell Adhesion , Humans , Mice , Models, Molecular
16.
J Clin Invest ; 124(2): 696-711, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24430185

ABSTRACT

The mechanisms that regulate the strength of synaptic transmission and intrinsic neuronal excitability are well characterized; however, the mechanisms that promote disease-causing neural network dysfunction are poorly defined. We generated mice with targeted neuron type-specific expression of a gain-of-function variant of the neurotransmitter receptor for glycine (GlyR) that is found in hippocampectomies from patients with temporal lobe epilepsy. In this mouse model, targeted expression of gain-of-function GlyR in terminals of glutamatergic cells or in parvalbumin-positive interneurons persistently altered neural network excitability. The increased network excitability associated with gain-of-function GlyR expression in glutamatergic neurons resulted in recurrent epileptiform discharge, which provoked cognitive dysfunction and memory deficits without affecting bidirectional synaptic plasticity. In contrast, decreased network excitability due to gain-of-function GlyR expression in parvalbumin-positive interneurons resulted in an anxiety phenotype, but did not affect cognitive performance or discriminative associative memory. Our animal model unveils neuron type-specific effects on cognition, formation of discriminative associative memory, and emotional behavior in vivo. Furthermore, our data identify a presynaptic disease-causing molecular mechanism that impairs homeostatic regulation of neural network excitability and triggers neuropsychiatric symptoms.


Subject(s)
Cognition Disorders/physiopathology , Memory , Nerve Net , Animals , Anxiety/metabolism , Brain/metabolism , Cytoplasm/metabolism , Genotype , Glutamine/chemistry , Glutathione Transferase/metabolism , Glycine/chemistry , Green Fluorescent Proteins/metabolism , HEK293 Cells , Hippocampus/metabolism , Homeostasis , Humans , Interneurons/metabolism , Male , Mice , Mice, Transgenic , Neuronal Plasticity/physiology , Oscillometry , Parvalbumins/chemistry , Phenotype , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Synaptic Transmission
17.
Mol Vis ; 19: 2312-20, 2013.
Article in English | MEDLINE | ID: mdl-24265546

ABSTRACT

PURPOSE: To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65⁻/⁻ mouse model of Leber congenital amaurosis. METHODS: We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5⁻/⁻/Rpe65⁻/⁻). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin α subunit (Gnat1), and cone transducin α subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. RESULTS: No differences in the progression of retinal degeneration were observed between the Rpe65⁻/⁻ and Cspg5⁻/⁻/Rpe65⁻/⁻ mice. No retinal phenotype was detected in the late postnatal and adult Cspg5⁻/⁻ mice, when compared to the wild-type mice. CONCLUSIONS: Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65⁻/⁻ mice, no protective effect or any involvement of Cspg5 in disease progression was identified.


Subject(s)
Membrane Proteins/metabolism , Proteoglycans/metabolism , Retinal Degeneration/genetics , cis-trans-Isomerases/genetics , Animals , Gene Expression Regulation , Membrane Proteins/deficiency , Mice , Organ Specificity/genetics , Proteoglycans/deficiency , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Time Factors , cis-trans-Isomerases/deficiency , cis-trans-Isomerases/metabolism
18.
Eur J Neurosci ; 38(9): 3270-80, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23889129

ABSTRACT

Chicken acidic leucine-rich EGF-like domain-containing brain protein (CALEB), also known as chondroitin sulfate proteoglycan (CSPG)5 or neuroglycan C, is a neural chondroitin sulfate-containing and epidermal growth factor (EGF)-domain-containing transmembrane protein that is implicated in synaptic maturation. Here, we studied the role of CALEB within the developing cerebellum. Adult CALEB-deficient mice displayed impaired motor coordination in Rota-Rod experiments. Analysis of the neuronal connectivity of Purkinje cells by patch-clamp recordings demonstrated impairments of presynaptic maturation of inhibitory synapses. GABAergic synapses on Purkinje cells revealed decreased evoked amplitudes, altered paired-pulse facilitation and reduced depression after repetitive stimulation at early postnatal but not at mature stages. Furthermore, the elimination of supernumerary climbing fiber synapses on Purkinje cells was found to occur at earlier developmental stages in the absence of CALEB. For example, at postnatal day 8 in wild-type mice, 54% of Purkinje cells had three or more climbing fiber synapses in contrast to mutants where this number was decreased to less than 25%. The basic properties of the climbing fiber Purkinje cell synapse remained unaffected. Using Sholl analysis of dye-injected Purkinje cells we revealed that the branching pattern of the dendritic tree of Purkinje cells was not impaired in CALEB-deficient mice. The alterations observed by patch-clamp recordings correlated with a specific pattern and timing of expression of CALEB in Purkinje cells, i.e. it is dynamically regulated during development from a high chondroitin sulfate-containing form to a non-chondroitin sulfate-containing form. Thus, our results demonstrated an involvement of CALEB in the presynaptic differentiation of cerebellar GABAergic synapses and revealed a new role for CALEB in synapse elimination in Purkinje cells.


Subject(s)
Cerebellum/metabolism , Membrane Proteins/metabolism , Proteoglycans/metabolism , Synapses/physiology , Synaptic Potentials , Animals , Cerebellum/growth & development , Cerebellum/physiology , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteoglycans/genetics , Purkinje Cells/metabolism , Purkinje Cells/physiology , Synapses/metabolism
19.
Genes Dev ; 26(15): 1743-57, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22810622

ABSTRACT

Neocortical neurons have highly branched dendritic trees that are essential for their function. Indeed, defects in dendritic arborization are associated with human neurodevelopmental disorders. The molecular mechanisms regulating dendritic arbor complexity, however, are still poorly understood. Here, we uncover the molecular basis for the regulation of dendritic branching during cortical development. We show that during development, dendritic branching requires post-mitotic suppression of the RhoGTPase Cdc42. By generating genetically modified mice, we demonstrate that this is catalyzed in vivo by the novel Cdc42-GAP NOMA-GAP. Loss of NOMA-GAP leads to decreased neocortical volume, associated specifically with profound oversimplification of cortical dendritic arborization and hyperactivation of Cdc42. Remarkably, dendritic complexity and cortical thickness can be partially restored by genetic reduction of post-mitotic Cdc42 levels. Furthermore, we identify the actin regulator cofilin as a key regulator of dendritic complexity in vivo. Cofilin activation during late cortical development depends on NOMA-GAP expression and subsequent inhibition of Cdc42. Strikingly, in utero expression of active cofilin is sufficient to restore postnatal dendritic complexity in NOMA-GAP-deficient animals. Our findings define a novel cell-intrinsic mechanism to regulate dendritic branching and thus neuronal complexity in the cerebral cortex.


Subject(s)
Actin Depolymerizing Factors/metabolism , Dendrites/metabolism , GTPase-Activating Proteins/metabolism , Neocortex/growth & development , Neocortex/metabolism , cdc42 GTP-Binding Protein/metabolism , Animals , Cells, Cultured , Female , GTPase-Activating Proteins/genetics , Mice , Mice, Transgenic
20.
Development ; 139(10): 1831-41, 2012 May.
Article in English | MEDLINE | ID: mdl-22491945

ABSTRACT

Dorsal spinal cord neurons receive and integrate somatosensory information provided by neurons located in dorsal root ganglia. Here we demonstrate that dorsal spinal neurons require the Krüppel-C(2)H(2) zinc-finger transcription factor Bcl11a for terminal differentiation and morphogenesis. The disrupted differentiation of dorsal spinal neurons observed in Bcl11a mutant mice interferes with their correct innervation by cutaneous sensory neurons. To understand the mechanism underlying the innervation deficit, we characterized changes in gene expression in the dorsal horn of Bcl11a mutants and identified dysregulated expression of the gene encoding secreted frizzled-related protein 3 (sFRP3, or Frzb). Frzb mutant mice show a deficit in the innervation of the spinal cord, suggesting that the dysregulated expression of Frzb can account in part for the phenotype of Bcl11a mutants. Thus, our genetic analysis of Bcl11a reveals essential functions of this transcription factor in neuronal morphogenesis and sensory wiring of the dorsal spinal cord and identifies Frzb, a component of the Wnt pathway, as a downstream acting molecule involved in this process.


Subject(s)
Carrier Proteins/metabolism , Ganglia, Spinal/cytology , Neurons/cytology , Nuclear Proteins/metabolism , Spinal Cord/cytology , Animals , Carrier Proteins/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Chromatin Immunoprecipitation , DNA-Binding Proteins , Electrophysiology , Ganglia, Spinal/metabolism , In Situ Hybridization , Mice , Mice, Knockout , Morphogenesis/genetics , Morphogenesis/physiology , Neurons/metabolism , Nuclear Proteins/genetics , Real-Time Polymerase Chain Reaction , Repressor Proteins , Sensory Receptor Cells/cytology , Sensory Receptor Cells/metabolism , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...