Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(2)2023 02 20.
Article in English | MEDLINE | ID: mdl-36851797

ABSTRACT

An influenza circulation was observed in Myanmar between October and November in 2021. Patients with symptoms of influenza-like illness were screened using rapid diagnostic test (RDT) kits, and 147/414 (35.5%) upper respiratory tract specimens presented positive results. All RDT-positive samples were screened by a commercial multiplex real-time polymerase chain reaction (RT-PCR) assay, and 30 samples positive for influenza A(H3N2) or B underwent further typing/subtyping for cycle threshold (Ct) value determination based on cycling probe RT-PCR. The majority of subtyped samples (n = 13) were influenza A(H3N2), while only three were B/Victoria. Clinical samples with low Ct values obtained by RT-PCR were used for whole-genome sequencing via next-generation sequencing technology. All collected viruses were distinct from the Southern Hemisphere vaccine strains of the corresponding season but matched with vaccines of the following season. Influenza A(H3N2) strains from Myanmar belonged to clade 2a.3 and shared the highest genetic proximity with Bahraini strains. B/Victoria viruses belonged to clade V1A.3a.2 and were genetically similar to Bangladeshi strains. This study highlights the importance of performing influenza virus surveillance with genetic characterization of the influenza virus in Myanmar, to contribute to global influenza surveillance during the COVID-19 pandemic.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Myanmar/epidemiology , Pandemics
2.
Viruses ; 14(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36366512

ABSTRACT

This study aimed to analyze the genetic and evolutionary characteristics of the influenza A/H3N2 viruses circulating in Myanmar from 2015 to 2019. Whole genomes from 79 virus isolates were amplified using real-time polymerase chain reaction and successfully sequenced using the Illumina iSeq100 platforms. Eight individual phylogenetic trees were retrieved for each segment along with those of the World Health Organization (WHO)-recommended Southern Hemisphere vaccine strains for the respective years. Based on the WHO clades classification, the A/H3N2 strains in Myanmar from 2015 to 2019 collectively belonged to clade 3c.2. These strains were further defined based on hemagglutinin substitutions as follows: clade 3C.2a (n = 39), 3C.2a1 (n = 2), and 3C.2a1b (n = 38). Genetic analysis revealed that the Myanmar strains differed from the Southern Hemisphere vaccine strains each year, indicating that the vaccine strains did not match the circulating strains. The highest rates of nucleotide substitution were estimated for hemagglutinin (3.37 × 10-3 substitutions/site/year) and neuraminidase (2.89 × 10-3 substitutions/site/year). The lowest rate was for non-structural protein segments (4.19 × 10-5 substitutions/site/year). The substantial genetic diversity that was revealed improved phylogenetic classification. This information will be particularly relevant for improving vaccine strain selection.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype/genetics , Influenza A virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , Phylogeny , Myanmar/epidemiology , Sequence Analysis, DNA , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...