Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 1035571, 2022.
Article in English | MEDLINE | ID: mdl-36479106

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). One of the main topics of conversation in these past months in the world of immunology has been the issue of how patients with immune defects will fare if they contract this infection. To date there has been limited data on larger cohorts of patients with Inborn Errors of Immunity (IEI) diagnosed with COVID-19. Here, we review the data of COVID-19 infections in a single center cohort of 113 patients from the Mount Sinai Immunodeficiency program, who had 132 infections between January 2020 and June 2022. This included 56 males and 57 females, age range 2 - 84 (median 42). The mortality rate was 3%. Comparison between admitted patients revealed a significantly increased risk of hospitalization amongst the unvaccinated patients, 4% vaccinated vs 40% unvaccinated; odds ratio 15.0 (95% CI 4.2 - 53.4; p <0.00001). Additionally, COVID anti-spike antibody levels, determined in 36 of these patients post vaccination and before infection, were highly variable.


Subject(s)
COVID-19 , Female , Male , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , SARS-CoV-2 , Hospitalization , Vaccination , Communication
2.
J Clin Invest ; 131(3)2021 02 01.
Article in English | MEDLINE | ID: mdl-33529166

ABSTRACT

The coat protein I (COPI) complex mediates retrograde trafficking from the Golgi to the endoplasmic reticulum (ER). Five siblings with persistent bacterial and viral infections and defective humoral and cellular immunity had a homozygous p.K652E mutation in the γ1 subunit of COPI (γ1-COP). The mutation disrupts COPI binding to the KDEL receptor and impairs the retrieval of KDEL-bearing chaperones from the Golgi to the ER. Homozygous Copg1K652E mice had increased ER stress in activated T and B cells, poor antibody responses, and normal numbers of T cells that proliferated normally, but underwent increased apoptosis upon activation. Exposure of the mutants to pet store mice caused weight loss, lymphopenia, and defective T cell proliferation that recapitulated the findings in the patients. The ER stress-relieving agent tauroursodeoxycholic acid corrected the immune defects of the mutants and reversed the phenotype they acquired following exposure to pet store mice. This study establishes the role of γ1-COP in the ER retrieval of KDEL-bearing chaperones and thereby the importance of ER homeostasis in adaptive immunity.


Subject(s)
Apoptosis/immunology , B-Lymphocytes/immunology , Endoplasmic Reticulum Stress/immunology , Lymphocyte Activation , Mutation, Missense , Severe Combined Immunodeficiency/immunology , T-Lymphocytes/immunology , Amino Acid Substitution , Animals , Apoptosis/genetics , Coatomer Protein/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum Stress/genetics , Golgi Apparatus/genetics , Golgi Apparatus/immunology , Humans , Mice , Mice, Mutant Strains , Receptors, Peptide/genetics , Receptors, Peptide/immunology , Severe Combined Immunodeficiency/genetics
5.
J Allergy Clin Immunol ; 146(1): 192-202, 2020 07.
Article in English | MEDLINE | ID: mdl-31862378

ABSTRACT

BACKGROUND: The gene AK2 encodes the phosphotransferase adenylate kinase 2 (AK2). Human variants in AK2 cause reticular dysgenesis, a severe combined immunodeficiency with agranulocytosis, lymphopenia, and sensorineural deafness that requires hematopoietic stem cell transplantation for survival. OBJECTIVE: We investigated the mechanisms underlying recurrent sinopulmonary infections and hypogammaglobulinemia in 15 patients, ranging from 3 to 34 years of age, from 9 kindreds. Only 2 patients, both of whom had mildly impaired T-cell proliferation, each had a single clinically significant opportunistic infection. METHODS: Patient cells were studied with next-generation DNA sequencing, tandem mass spectrometry, and assays of lymphocyte and mitochondrial function. RESULTS: We identified 2 different homozygous variants in AK2. AK2G100S and AK2A182D permit residual protein expression, enzymatic activity, and normal numbers of neutrophils and lymphocytes. All but 1 patient had intact hearing. The patients' B cells had severely impaired proliferation and in vitro immunoglobulin secretion. With activation, the patients' B cells exhibited defective mitochondrial respiration and impaired regulation of mitochondrial membrane potential and quality. Although activated T cells from the patients with opportunistic infections demonstrated impaired mitochondrial function, the mitochondrial quality in T cells was preserved. Consistent with the capacity of activated T cells to utilize nonmitochondrial metabolism, these findings revealed a less strict cellular dependence of T-cell function on AK2 activity. Chemical inhibition of ATP synthesis in control T and B cells similarly demonstrated the greater dependency of B cells on mitochondrial function. CONCLUSIONS: Our patients demonstrate the in vivo sequelae of the cell-specific requirements for the functions of AK2 and mitochondria, particularly in B-cell activation and antibody production.


Subject(s)
Adenylate Kinase/genetics , B-Lymphocytes/immunology , Homozygote , Lymphocyte Activation/genetics , Mutation, Missense , Severe Combined Immunodeficiency/genetics , Adenylate Kinase/immunology , Adult , Amino Acid Substitution , Child , Child, Preschool , Female , Humans , Male , Severe Combined Immunodeficiency/immunology , T-Lymphocytes/immunology
7.
J Allergy Clin Immunol ; 144(2): 574-583.e5, 2019 08.
Article in English | MEDLINE | ID: mdl-30872117

ABSTRACT

BACKGROUND: The tumor TNF receptor family member 4-1BB (CD137) is encoded by TNFRSF9 and expressed on activated T cells. 4-1BB provides a costimulatory signal that enhances CD8+ T-cell survival, cytotoxicity, and mitochondrial activity, thereby promoting immunity against viruses and tumors. The ligand for 4-1BB is expressed on antigen-presenting cells and EBV-transformed B cells. OBJECTIVE: We investigated the genetic basis of recurrent sinopulmonary infections, persistent EBV viremia, and EBV-induced lymphoproliferation in 2 unrelated patients. METHODS: Whole-exome sequencing, immunoblotting, immunophenotyping, and in vitro assays of lymphocyte and mitochondrial function were performed. RESULTS: The 2 patients shared a homozygous G109S missense mutation in 4-1BB that abolished protein expression and ligand binding. The patients' CD8+ T cells had reduced proliferation, impaired expression of IFN-γ and perforin, and diminished cytotoxicity against allogeneic and HLA-matched EBV-B cells. Mitochondrial biogenesis, membrane potential, and function were significantly reduced in the patients' activated T cells. An inhibitory antibody against 4-1BB recapitulated the patients' defective CD8+ T-cell activation and cytotoxicity against EBV-infected B cells in vitro. CONCLUSION: This novel immunodeficiency demonstrates the critical role of 4-1BB costimulation in host immunity against EBV infection.


Subject(s)
Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Lymphoproliferative Disorders/immunology , Mutation, Missense , Primary Immunodeficiency Diseases/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Child, Preschool , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/pathology , Female , Herpesvirus 4, Human/genetics , Humans , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/pathology , Lymphoproliferative Disorders/virology , Male , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/pathology , Primary Immunodeficiency Diseases/virology , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...