Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 5297, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35351950

ABSTRACT

This work reports highly selective multiple analyte detection by exploiting two different mechanisms; absorption and thermal conductivity using a single MEMS device. To illustrate the concept, we utilize a resonator composed of a clamped-guided arch beam connected to a flexural beam and a T-shaped moveable mass. A finite element model is used to study the mode shapes and mechanical behavior of the device with good agreement reported with the experimental data. The resonator displays two distinct out-of-plane modes of vibration. For humidity detection, we utilize physisorption by functionalizing the surface with graphene oxide (GO), which has strong affinity toward water vapors. The GO solution is prepared and drop-casted over the mass surface using an inkjet printer. On the other hand, cooling the heated flexural beams is used for helium (He) detection (thermal-conductivity-based sensor). The sensor characteristics are extensively studied when the modes are individually and simultaneously actuated. Results affirm the successful utilization of each mode for selective detection of relative humidity and He. This novel mode-dependent selective detection of multiple analytes can be a promising building block for the development of miniature, low-powered, and selective smart sensors for modern portable electronic devices.

2.
Micromachines (Basel) ; 12(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34832793

ABSTRACT

Controlling the nonlinearities of MEMS resonators is critical for their successful implementation in a wide range of sensing, signal conditioning, and filtering applications. Here, we utilize a passive technique based on geometry optimization to control the nonlinearities and the dynamical response of MEMS resonators. Also, we explored active technique i.e., tuning the axial stress of the resonator. To achieve this, we propose a new hybrid shape combining a straight and initially curved microbeam. The Galerkin method is employed to solve the beam equation and study the effect of the different design parameters on the ratios of the frequencies and the nonlinearities of the structure. We show by adequately selecting the parameters of the structure; we can realize systems with strong quadratic or cubic effective nonlinearities. Also, we investigate the resonator shape effect on symmetry breaking and study different linear coupling phenomena: crossing, veering, and mode hybridization. We demonstrate the possibility of tuning the frequencies of the different modes of vibrations to achieve commensurate ratios necessary for activating internal resonance. The proposed method is simple in principle, easy to fabricate, and offers a wide range of controllability on the sensor nonlinearities and response.

3.
Heliyon ; 7(4): e06769, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33937543

ABSTRACT

Solid friable residues (i.e. Ash) from combusted oil shale are a major environmental issue because they are highly enriched with toxic elements following combustion. The synchrotron based techniques X-ray Absorption Fine Structure (XAFS) were used for determining the changes in speciation of Chromium (Cr) and Vanadium (V) in the ash and its mixtures with Red soil and Phosphogypsum as additives, through one-year period of hydration process. The X-ray Absorption Near Edge Structure (XANES) qualitative results indicate that all mixtures exhibits similar patterns showing that Vanadium has remain as pentavalent state, on the contrary Chromium has dramatic decreased from hexavalent to trivalent. This change in Cr speciation became clearer with increasing hydration period. Therefore, the results confirmed the advantage of the hydration process in the Cr(VI) reduction which might be due the domination of carbonate phase within all mixtures, thus hydration caused carbonate dissolution that increase the pH toward more alkaline which caused the Cr(IV) reduction into less-harmful and less mobile Cr(III). This increase in pH was not in favor of changing the V(V) into V(IV) due to its large stability field V(V). The Extend X-ray Absorption Fine Structure (EXAFS) analysis showed that Cr exhibiting a coordination shell of C-atoms as first nearest neighbors backscattering atoms around Cr, and at C-atoms backscattering at medium range order. This confirmed the domination of carbonate media through the best fitting of Cr-C. Which might be attributed to the more alkaline conditions developed during saturation of water (hydration), that accelerates of the reduction of Cr(VI) into Cr(III). This means simply that hydration of the ash can reduce the presence of harmful Cr(VI) in these ash tailings.

4.
WIREs Water ; 6(2): e1330, 2019.
Article in English | MEDLINE | ID: mdl-33362922

ABSTRACT

The Fertile Crescent, its hilly flanks and surrounding drylands has been a critical region for studying how climate has influenced societal change, and this review focuses on the region over the last 20,000 years. The complex social, economic, and environmental landscapes in the region today are not new phenomena and understanding their interactions requires a nuanced, multidisciplinary understanding of the past. This review builds on a history of collaboration between the social and natural palaeoscience disciplines. We provide a multidisciplinary, multiscalar perspective on the relevance of past climate, environmental, and archaeological research in assessing present day vulnerabilities and risks for the populations of southwest Asia. We discuss the complexity of palaeoclimatic data interpretation, particularly in relation to hydrology, and provide an overview of key time periods of palaeoclimatic interest. We discuss the critical role that vegetation plays in the human-climate-environment nexus and discuss the implications of the available palaeoclimate and archaeological data, and their interpretation, for palaeonarratives of the region, both climatically and socially. We also provide an overview of how modelling can improve our understanding of past climate impacts and associated change in risk to societies. We conclude by looking to future work, and identify themes of "scale" and "seasonality" as still requiring further focus. We suggest that by appreciating a given locale's place in the regional hydroscape, be it an archaeological site or palaeoenvironmental archive, more robust links to climate can be made where appropriate and interpretations drawn will demand the resolution of factors acting across multiple scales. This article is categorized under:Human Water > Water as Imagined and RepresentedScience of Water > Water and Environmental ChangeWater and Life > Nature of Freshwater Ecosystems.

5.
Sensors (Basel) ; 16(6)2016 May 25.
Article in English | MEDLINE | ID: mdl-27231914

ABSTRACT

The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.

6.
Microsyst Nanoeng ; 2: 16002, 2016.
Article in English | MEDLINE | ID: mdl-31057814

ABSTRACT

Using partial electrodes and a multifrequency electrical source, we present a large-bandwidth, large-amplitude clamped-clamped microbeam resonator excited near the higher order modes of vibration. We analytically and experimentally investigate the nonlinear dynamics of the microbeam under a two-source harmonic excitation. The first-frequency source is swept around the first three modes of vibration, whereas the second source frequency remains fixed. New additive and subtractive resonances are demonstrated. We illustrated that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled. The microbeam is fabricated using polyimide as a structural layer coated with nickel from the top and chromium and gold layers from the bottom. Using the Galerkin method, a reduced order model is derived to simulate the static and dynamic response of the device. A good agreement between the theoretical and experimental data are reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...