Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Am J Respir Crit Care Med ; 209(8): 909-927, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619436

ABSTRACT

Background: An estimated 3 billion people, largely in low- and middle-income countries, rely on unclean fuels for cooking, heating, and lighting to meet household energy needs. The resulting exposure to household air pollution (HAP) is a leading cause of pneumonia, chronic lung disease, and other adverse health effects. In the last decade, randomized controlled trials of clean cooking interventions to reduce HAP have been conducted. We aim to provide guidance on how to interpret the findings of these trials and how they should inform policy makers and practitioners.Methods: We assembled a multidisciplinary working group of international researchers, public health practitioners, and policymakers with expertise in household air pollution from within academia, the American Thoracic Society, funders, nongovernmental organizations, and global organizations, including the World Bank and the World Health Organization. We performed a literature search, convened four sessions via web conference, and developed consensus conclusions and recommendations via the Delphi method.Results: The committee reached consensus on 14 conclusions and recommendations. Although some trials using cleaner-burning biomass stoves or cleaner-cooking fuels have reduced HAP exposure, the committee was divided (with 55% saying no and 45% saying yes) on whether the studied interventions improved measured health outcomes.Conclusions: HAP is associated with adverse health effects in observational studies. However, it remains unclear which household energy interventions reduce exposure, improve health, can be scaled, and are sustainable. Researchers should engage with policy makers and practitioners working to scale cleaner energy solutions to understand and address their information needs.


Subject(s)
Air Pollution , Developing Countries , Humans , Biomass , Consensus , Societies , Randomized Controlled Trials as Topic , Observational Studies as Topic
2.
Environ Health Perspect ; 132(3): 37006, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38506828

ABSTRACT

BACKGROUND: The association between prenatal household air pollution (HAP) exposure and childhood blood pressure (BP) is unknown. OBJECTIVE: Within the Ghana Randomized Air Pollution and Health Study (GRAPHS) we examined time-varying associations between a) maternal prenatal and b) first-year-of-life HAP exposure with BP at 4 years of age and, separately, whether a stove intervention delivered prenatally and continued through the first year of life could improve BP at 4 years of age. METHODS: GRAPHS was a cluster-randomized cookstove intervention trial wherein n=1,414 pregnant women were randomized to one of two stove interventions: a) a liquefied petroleum gas (LPG) stove or improved biomass stove, or b) control (open fire cooking). Maternal HAP exposure over pregnancy and child HAP exposure over the first year of life was quantified by repeated carbon monoxide (CO) measurements; a subset of women (n=368) also performed one prenatal and one postnatal personal fine particulate matter (PM2.5) measurement. Systolic and diastolic BP (SBP and DBP) were measured in n=667 4-y-old children along with their PM2.5 exposure (n=692). We examined the effect of the intervention on resting BP z-scores. We also employed reverse distributed lag models to examine time-varying associations between a) maternal prenatal and b) first-year-of-life HAP exposure and resting BP z-scores. Among those with PM2.5 measures, we examined associations between PM2.5 and resting BP z-scores. Sex-specific effects were considered. RESULTS: Intention-to-treat analyses identified that DBP z-score at 4 years of age was lower among children born in the LPG arm (LPG ß=-0.20; 95% CI: -0.36, -0.03) as compared with those in the control arm, and females were most susceptible to the intervention. Higher CO exposure in late gestation was associated with higher SBP and DBP z-score at 4 years of age, whereas higher late-first-year-of-life CO exposure was associated with higher DBP z-score. In the subset with PM2.5 measurements, higher maternal postnatal PM2.5 exposure was associated with higher SBP z-scores. DISCUSSION: These findings suggest that prenatal and first-year-of-life HAP exposure are associated with child BP and support the need for reductions in exposure to HAP, with interventions such as cleaner cooking beginning in pregnancy. https://doi.org/10.1289/EHP13225.


Subject(s)
Air Pollution, Indoor , Maternal Exposure , Female , Humans , Male , Pregnancy , Biomass , Blood Pressure , Carbon Monoxide , Ghana/epidemiology , Infant
4.
BJOG ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228570

ABSTRACT

OBJECTIVE: To describe the mortality risks by fine strata of gestational age and birthweight among 230 679 live births in nine low- and middle-income countries (LMICs) from 2000 to 2017. DESIGN: Descriptive multi-country secondary data analysis. SETTING: Nine LMICs in sub-Saharan Africa, Southern and Eastern Asia, and Latin America. POPULATION: Liveborn infants from 15 population-based cohorts. METHODS: Subnational, population-based studies with high-quality birth outcome data were invited to join the Vulnerable Newborn Measurement Collaboration. All studies included birthweight, gestational age measured by ultrasound or last menstrual period, infant sex and neonatal survival. We defined adequate birthweight as 2500-3999 g (reference category), macrosomia as ≥4000 g, moderate low as 1500-2499 g and very low birthweight as <1500 g. We analysed fine strata classifications of preterm, term and post-term: ≥42+0 , 39+0 -41+6 (reference category), 37+0 -38+6 , 34+0 -36+6 ,34+0 -36+6 ,32+0 -33+6 , 30+0 -31+6 , 28+0 -29+6 and less than 28 weeks. MAIN OUTCOME MEASURES: Median and interquartile ranges by study for neonatal mortality rates (NMR) and relative risks (RR). We also performed meta-analysis for the relative mortality risks with 95% confidence intervals (CIs) by the fine categories, stratified by regional study setting (sub-Saharan Africa and Southern Asia) and study-level NMR (≤25 versus >25 neonatal deaths per 1000 live births). RESULTS: We found a dose-response relationship between lower gestational ages and birthweights with increasing neonatal mortality risks. The highest NMR and RR were among preterm babies born at <28 weeks (median NMR 359.2 per 1000 live births; RR 18.0, 95% CI 8.6-37.6) and very low birthweight (462.8 per 1000 live births; RR 43.4, 95% CI 29.5-63.9). We found no statistically significant neonatal mortality risk for macrosomia (RR 1.1, 95% CI 0.6-3.0) but a statistically significant risk for all preterm babies, post-term babies (RR 1.3, 95% CI 1.1-1.5) and babies born at 370 -386 weeks (RR 1.2, 95% CI 1.0-1.4). There were no statistically significant differences by region or underlying neonatal mortality. CONCLUSIONS: In addition to tracking vulnerable newborn types, monitoring finer categories of birthweight and gestational age will allow for better understanding of the predictors, interventions and health outcomes for vulnerable newborns. It is imperative that all newborns from live births and stillbirths have an accurate recorded weight and gestational age to track maternal and neonatal health and optimise prevention and care of vulnerable newborns.

5.
Am J Respir Crit Care Med ; 209(6): 716-726, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38016085

ABSTRACT

Rationale: The impact of a household air pollution (HAP) stove intervention on child lung function has been poorly described. Objectives: To assess the effect of a HAP stove intervention for infants prenatally to age 1 on, and exposure-response associations with, lung function at child age 4. Methods: The Ghana Randomized Air Pollution and Health Study randomized pregnant women to liquefied petroleum gas (LPG), improved biomass, or open-fire (control) stove conditions through child age 1. We quantified HAP exposure by repeated maternal and child personal carbon monoxide (CO) exposure measurements. Children performed oscillometry, an effort-independent lung function measurement, at age 4. We examined associations between Ghana Randomized Air Pollution and Health Study stove assignment and prenatal and infant CO measurements and oscillometry using generalized linear regression models. We used reverse distributed lag models to examine time-varying associations between prenatal CO and oscillometry. Measurements and Main Results: The primary oscillometry measure was reactance at 5 Hz, X5, a measure of elastic and inertial lung properties. Secondary measures included total, large airway, and small airway resistance at 5 Hz, 20 Hz, and the difference in resistance at 5 Hz and 20 Hz (R5, R20, and R5-20, respectively); area of reactance (AX); and resonant frequency. Of the 683 children who attended the lung function visit, 567 (83%) performed acceptable oscillometry. A total of 221, 106, and 240 children were from the LPG, improved biomass, and control arms, respectively. Compared with control, the improved biomass stove condition was associated with lower reactance at 5 Hz (X5 z-score: ß = -0.25; 95% confidence interval [CI] = -0.39, -0.11), higher large airway resistance (R20 z-score: ß = 0.34; 95% CI = 0.23, 0.44), and higher AX (AX z-score: ß = 0.16; 95% CI = 0.06, 0.26), which is suggestive of overall worse lung function. The LPG stove condition was associated with higher X5 (X5 score: ß = 0.16; 95% CI = 0.01, 0.31) and lower small airway resistance (R5-20 z-score: ß = -0.15; 95% CI = -0.30, 0.0), which is suggestive of better small airway function. Higher average prenatal CO exposure was associated with higher R5 and R20, and distributed lag models identified sensitive windows of exposure between CO and X5, R5, R20, and R5-20. Conclusions: These data support the importance of prenatal HAP exposure on child lung function. Clinical trial registered with www.clinicaltrials.gov (NCT01335490).


Subject(s)
Air Pollution , Child, Preschool , Female , Humans , Infant , Pregnancy , Air Pollution/adverse effects , Airway Resistance/physiology , Ghana/epidemiology , Lung , Pregnant Women
6.
Article in English | MEDLINE | ID: mdl-37798345

ABSTRACT

BACKGROUND: Personal exposure to fine particulate matter (PM2.5) from household air pollution is well-documented in sub-Saharan Africa, but spatiotemporal patterns of exposure are poorly characterized. OBJECTIVE: We used paired GPS and personal PM2.5 data to evaluate changes in exposure across location-time environments (e.g., household and community, during cooking and non-cooking hours), building density and proximity to roadways. METHODS: Our study included 259 sessions of geolocated, gravimetrically-calibrated one-minute personal PM2.5 measurements from participants in the GRAPHS Child Lung Function Study. The household vicinity was defined using a 50-meter buffer around participants' homes. Community boundaries were developed using a spatial clustering algorithm applied to an open-source dataset of building footprints in Africa. For each GPS location, we estimated building density (500 m buffer) and proximity to roadways (100 m buffer). We estimated changes in PM2.5 exposure by location (household, community), time of day (morning/evening cooking hours, night), building density, and proximity to roadways using linear mixed effect models. RESULTS: Relative to nighttime household exposure, PM2.5 exposure during evening cooking hours was 2.84 (95%CI = 2.70-2.98) and 1.80 (95%CI = 1.54-2.10) times higher in the household and community, respectively. Exposures were elevated in areas with the highest versus lowest quartile of building density (FactorQ1vsQ4 = 1.60, 95%CI = 1.42-1.80). The effect of building density was strongest during evening cooking hours, and influenced levels in both the household and community (31% and 65% relative increase from Q1 to Q4, respectively). Being proximal to a trunk, tertiary or track roadway increased exposure by a factor of 1.16 (95%CI = 1.07-1.25), 1.68 (95%CI = 1.45-1.95) and 1.27 (95%CI = 1.06-1.53), respectively. IMPACT: Household air pollution from cooking with solid fuels in sub-Saharan Africa is a major environmental concern for maternal and child health. Our study advances previous knowledge by quantifying the impact of household cooking activities on air pollution levels in the community, and identifying two geographic features, building density and roadways, that contribute to maternal and child daily exposure. Household cooking contributes to higher air pollution levels in the community especially in areas with greater building density. Findings underscore the need for equitable clean household energy transitions that reach entire communities to reduce health risks from household and outdoor air pollution.

7.
Environ Health Insights ; 17: 11786302231198854, 2023.
Article in English | MEDLINE | ID: mdl-37736574

ABSTRACT

A major part of Ghana's current household energy policy is focused on using a branded cylinder recirculation model (BCRM) to promote the safe use of Liquefied Petroleum Gas (LPG) for primary cooking. The implementation of the BCRM is expected to increase LPG adoption by households to the announced policy goal of 50% of the population by 2030. We investigated the impact of the COVID-19 pandemic on the implementation of the BCRM, availability, and household use of cleaner fuels. This was assessed using existing data on clean fuel use prior to the COVID-19 pandemic. Additional data was collected using questionnaire-based household surveys and qualitative interviews. It was found that the expansion of BCRM was significantly impacted by the COVID-19 pandemic. Planning activities such as baseline data collection and stakeholder engagement were delayed due to the COVID-19 restrictions. Changes in household incomes during the pandemic had the biggest percentage effect on household choice of cooking fuel, causing a regression in some cases, to polluting fuel use. This study provides insights that could be valuable in future understanding of the interactions between pandemic control measures and economic disruptions that may affect household energy choices for cooking.

8.
Proc Natl Acad Sci U S A ; 120(34): e2301061120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37582122

ABSTRACT

Household electrification is thought to be an important part of a carbon-neutral future and could also have additional benefits to adopting households such as improved air quality. However, the effectiveness of specific electrification policies in reducing total emissions and boosting household livelihoods remains a crucial open question in both developed and developing countries. We investigated a transition of more than 750,000 households from gas to electric cookstoves-one of the most popular residential electrification strategies-in Ecuador following a program that promoted induction stoves and assessed its impacts on electricity consumption, greenhouse gas emissions, and health. We estimate that the program resulted in a 5% increase in total residential electricity consumption between 2015 and 2021. By offsetting a commensurate amount of cooking gas combustion, we find that the program likely reduced national greenhouse gas emissions, thanks in part to the country's electricity grid being 80% hydropower in later parts of the time period. Increased induction stove uptake was also associated with declines in all-cause and respiratory-related hospitalizations nationwide. These findings suggest that, when the electricity grid is largely powered by renewables, gas-to-induction cooking transitions represent a promising way of amplifying the health and climate cobenefits of net-carbon-zero policies.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Cooking , Electricity , Air Pollutants/analysis , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Carbon , Greenhouse Gases , Climate
9.
Environ Int ; 178: 108062, 2023 08.
Article in English | MEDLINE | ID: mdl-37392730

ABSTRACT

BACKGROUND: Prenatal household air pollution impairs birth weight and increases pneumonia risk however time-varying associations have not been elucidated and may have implications for the timing of public health interventions. METHODS: The Ghana Randomized Air Pollution and Health Study (GRAPHS) enrolled 1,414 pregnant women from Kintampo, Ghana and measured personal carbon monoxide (CO) exposure four times over pregnancy. Birth weight was measured within 72-hours of birth. Fieldworkers performed weekly pneumonia surveillance and referred sick children to study physicians. The primary pneumonia outcome was one or more physician-diagnosed severe pneumonia episode in the first year of life. We employed reverse distributed lag models to examine time-varying associations between prenatal CO exposure and birth weight and infant pneumonia risk. RESULTS: Analyses included n = 1,196 mother-infant pairs. In models adjusting for child sex; maternal age, body mass index (BMI), ethnicity and parity at enrollment; household wealth index; number of antenatal visits; and evidence of placental malaria, prenatal CO exposures from 15 to 20 weeks gestation were inversely associated with birth weight. Sex-stratified models identified a similar sensitive window in males and a window at 10-weeks gestation in females. In models adjusting for child sex, maternal age, BMI and ethnicity, household wealth index, gestational age at delivery and average postnatal child CO exposure, CO exposure during 34-39 weeks gestation were positively associated with severe pneumonia risk, especially in females. CONCLUSIONS: Household air pollution exposures in mid- and late- gestation are associated with lower birth weight and higher pneumonia risk, respectively. These findings support the urgent need for deployment of clean fuel stove interventions beginning in early pregnancy.


Subject(s)
Air Pollutants , Air Pollution , Pneumonia , Female , Humans , Infant , Male , Pregnancy , Air Pollutants/adverse effects , Air Pollutants/analysis , Birth Weight , Carbon Monoxide/adverse effects , Maternal Exposure/adverse effects , Particulate Matter/adverse effects , Particulate Matter/analysis , Placenta/chemistry , Pneumonia/epidemiology , Pneumonia/etiology
10.
Environ Sci Technol ; 57(29): 10708-10720, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37437161

ABSTRACT

Particulate matter air pollution is a leading cause of global mortality, particularly in Asia and Africa. Addressing the high and wide-ranging air pollution levels requires ambient monitoring, but many low- and middle-income countries (LMICs) remain scarcely monitored. To address these data gaps, recent studies have utilized low-cost sensors. These sensors have varied performance, and little literature exists about sensor intercomparison in Africa. By colocating 2 QuantAQ Modulair-PM, 2 PurpleAir PA-II SD, and 16 Clarity Node-S Generation II monitors with a reference-grade Teledyne monitor in Accra, Ghana, we present the first intercomparisons of different brands of low-cost sensors in Africa, demonstrating that each type of low-cost sensor PM2.5 is strongly correlated with reference PM2.5, but biased high for ambient mixture of sources found in Accra. When compared to a reference monitor, the QuantAQ Modulair-PM has the lowest mean absolute error at 3.04 µg/m3, followed by PurpleAir PA-II (4.54 µg/m3) and Clarity Node-S (13.68 µg/m3). We also compare the usage of 4 statistical or machine learning models (Multiple Linear Regression, Random Forest, Gaussian Mixture Regression, and XGBoost) to correct low-cost sensors data, and find that XGBoost performs the best in testing (R2: 0.97, 0.94, 0.96; mean absolute error: 0.56, 0.80, and 0.68 µg/m3 for PurpleAir PA-II, Clarity Node-S, and Modulair-PM, respectively), but tree-based models do not perform well when correcting data outside the range of the colocation training. Therefore, we used Gaussian Mixture Regression to correct data from the network of 17 Clarity Node-S monitors deployed around Accra, Ghana, from 2018 to 2021. We find that the network daily average PM2.5 concentration in Accra is 23.4 µg/m3, which is 1.6 times the World Health Organization Daily PM2.5 guideline of 15 µg/m3. While this level is lower than those seen in some larger African cities (such as Kinshasa, Democratic Republic of the Congo), mitigation strategies should be developed soon to prevent further impairment to air quality as Accra, and Ghana as a whole, rapidly grow.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Ghana , Environmental Monitoring , Democratic Republic of the Congo , Particulate Matter/analysis , Air Pollution/analysis
11.
BJOG ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37156238

ABSTRACT

OBJECTIVE: We aimed to understand the mortality risks of vulnerable newborns (defined as preterm and/or born weighing smaller or larger compared to a standard population), in low- and middle-income countries (LMICs). DESIGN: Descriptive multi-country, secondary analysis of individual-level study data of babies born since 2000. SETTING: Sixteen subnational, population-based studies from nine LMICs in sub-Saharan Africa, Southern and Eastern Asia, and Latin America. POPULATION: Live birth neonates. METHODS: We categorically defined five vulnerable newborn types based on size (large- or appropriate- or small-for-gestational age [LGA, AGA, SGA]), and term (T) and preterm (PT): T + LGA, T + SGA, PT + LGA, PT + AGA, and PT + SGA, with T + AGA (reference). A 10-type definition included low birthweight (LBW) and non-LBW, and a four-type definition collapsed AGA/LGA into one category. We performed imputation for missing birthweights in 13 of the studies. MAIN OUTCOME MEASURES: Median and interquartile ranges by study for the prevalence, mortality rates and relative mortality risks for the four, six and ten type classification. RESULTS: There were 238 203 live births with known neonatal status. Four of the six types had higher mortality risk: T + SGA (median relative risk [RR] 2.6, interquartile range [IQR] 2.0-2.9), PT + LGA (median RR 7.3, IQR 2.3-10.4), PT + AGA (median RR 6.0, IQR 4.4-13.2) and PT + SGA (median RR 10.4, IQR 8.6-13.9). T + SGA, PT + LGA and PT + AGA babies who were LBW, had higher risk compared with non-LBW babies. CONCLUSIONS: Small and/or preterm babies in LIMCs have a considerably increased mortality risk compared with babies born at term and larger. This classification system may advance the understanding of the social determinants and biomedical risk factors along with improved treatment that is critical for newborn health.

12.
Energy Sustain Dev ; 74: 349-360, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37143764

ABSTRACT

Decades of government subsidies for LPG and electricity have facilitated near-universal clean cooking access and use in Ecuador, placing the nation ahead of most other peer low- and middle-income countries. The widespread socio-economic impacts of the COVID-19 pandemic has threatened the resilience of clean cooking systems globally, including by altering households' ability to purchase clean fuels and policymakers' considerations about continuing subsidy programs. As such, assessing the resilience of clean cooking in Ecuador during the pandemic can offer important lessons for the international community, especially other countries looking to ensure resilient transitions to clean cooking. We study household energy use patterns using interviews, newspaper reports, government data on household electricity and LPG consumption, and household surveys [N = 200 across two rounds]. The LPG and electricity distribution systems experienced occasional disruptions to cylinder refill delivery and meter reading processes, respectively, which were associated with pandemic-related mobility restrictions. However, for the most part, supply and distribution activities by private and public companies continued without fundamental change. Survey participants reported increases in unemployment and reductions in household income as well as increased use of polluting biomass as a secondary fuel. Ecuador's LPG and electricity distribution systems were resilient throughout the pandemic, with only minimal interruption of the widespread provision of low-cost clean cooking fuels. Our findings inform the global audience concerned about the resilience of clean household energy use on the potential for clean fuel subsidies to facilitate continued clean cooking even during the COVID-19 pandemic.

13.
Environ Health Perspect ; 131(3): 37017, 2023 03.
Article in English | MEDLINE | ID: mdl-36989076

ABSTRACT

BACKGROUND: Nationwide household transitions to the use of clean-burning cooking fuels are a promising pathway to reducing under-5 lower respiratory infection (LRI) mortality, the leading cause of child mortality globally, but such transitions are rare and evidence supporting an association between increased clean fuel use and improved health is limited. OBJECTIVES: This study aimed to investigate the association between increased primary clean cooking fuel use and under-5 LRI mortality in Ecuador between 1990 and 2019. METHODS: We documented cooking fuel use and cause-coded child mortalities at the canton (county) level in Ecuador from 1990 to 2019 (in four periods, 1988-1992, 1999-2003, 2008-2012, and 2015-2019). We characterized the association between clean fuel use and the rate of under-5 LRI mortalities at the canton level using quasi-Poisson generalized linear and generalized additive models, accounting for potential confounding variables that characterize wealth, urbanization, and child health care and vaccination rates, as well as canton and period fixed effects. We estimated averted under-5 LRI mortalities accrued over 30 y by predicting a counterfactual count of canton-period under-5 LRI mortalities were clean fuel use to not have increased and comparing with predicted canton-period under-5 LRI mortalities from our model and observed data. RESULTS: From 1990 to 2019, the proportion of households primarily using a clean cooking fuel increased from 59% to 95%, and under-5 LRI mortality fell from 28 to 7 per 100,000 under-5 population. Canton-level clean fuel use was negatively associated with under-5 LRI mortalities in linear and nonlinear models. The nonlinear association suggested a threshold at approximately 60% clean fuel use, above which there was a negative association. Increases in clean fuel use between 1990 and 2019 were associated with an estimated 7,300 averted under-5 LRI mortalities (95% confidence interval: 2,600, 12,100), accounting for nearly 20% of the declines in under-5 LRI mortality observed in Ecuador over the study period. DISCUSSION: Our findings suggest that the widespread household transition from using biomass to clean-burning fuels for cooking reduced under-5 LRI mortalities in Ecuador over the last 30 y. https://doi.org/10.1289/EHP11016.


Subject(s)
Air Pollution, Indoor , Family Characteristics , Child , Humans , Ecuador/epidemiology , Cooking , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis
14.
Malar J ; 22(1): 106, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36959655

ABSTRACT

BACKGROUND: Though anecdotal evidence suggests that smoke from HAP has a repellent effect on mosquitoes, very little work has been done to assess the effect of biomass smoke on malaria infection. The study, therefore, sought to investigate the hypothesis that interventions to reduce household biomass smoke may have an unintended consequence of increasing placental malaria or increase malaria infection in the first year of life. METHODS: This provides evidence from a randomized controlled trial among 1414 maternal-infant pairs in the Kintampo North and Kintampo South administrative areas of Ghana. Logistic regression was used to assess the association between study intervention assignment (LPG, Biolite or control) and placental malaria. Finally, an extended Cox model was used to assess the association between study interventions and all episodes of malaria parasitaemia in the first year of infant's life. RESULTS: The prevalence of placental malaria was 24.6%. Out of this, 20.8% were acute infections, 18.7% chronic infections and 60.5% past infections. The study found no statistical significant association between the study interventions and all types of placental malaria (OR = 0.88; 95% CI 0.59-1.30). Of the 1165 infants, 44.6% experienced at least one episode of malaria parasitaemia in the first year of life. The incidence of first and/or only episode of malaria parasitaemia was however found to be similar among the study arms. CONCLUSION: The findings suggest that cookstove interventions for pregnant women and infants, when combined with additional malaria prevention strategies, do not lead to an increased risk of malaria among pregnant women and infants.


Subject(s)
Air Pollution , Malaria , Infant , Female , Humans , Pregnancy , Ghana/epidemiology , Placenta , Malaria/epidemiology , Malaria/prevention & control , Smoke
15.
J Urban Health ; 100(2): 290-302, 2023 04.
Article in English | MEDLINE | ID: mdl-36759422

ABSTRACT

In summer 2020, New York City (NYC) implemented a free air conditioner (AC) distribution program in response to the threats of extreme heat and COVID-19. The program distributed and installed ACs in the homes of nearly 73,000 older, low-income residents of public and private housing. To evaluate the program's impact, survey data were collected from October 2020 to February 2021 via mail and online from 1447 program participants and 902 non-participating low-income NYC adults without AC as a comparison group. Data were examined by calculating frequencies, proportions, and logistic regression models. Participants were 3 times more likely to report staying home during hot weather in summer 2020 compared to non-participants (adjusted odds ratio [AOR] = 3.0, 95% confidence interval [CI] = 2.2, 4.1), with no difference between groups in summer 2019 (AOR = 1.0, CI = 0.8, 1.3). Participants were less likely to report that 2020 hot weather made them feel sick in their homes compared to non-participants (AOR = 0.2, CI = 0.2, 0.3). The program helped participants-low-income residents and primarily people of color-stay home safely during hot weather. These results are relevant for climate change health-adaptation efforts and heat-health interventions.


Subject(s)
COVID-19 , Extreme Heat , Adult , Humans , Extreme Heat/adverse effects , New York City/epidemiology , Public Health , COVID-19/epidemiology , Hot Temperature , Surveys and Questionnaires
17.
J Expo Sci Environ Epidemiol ; 33(3): 386-395, 2023 05.
Article in English | MEDLINE | ID: mdl-36274187

ABSTRACT

BACKGROUND: Personal monitoring can estimate individuals' exposures to environmental pollutants; however, accuracy depends on consistent monitor wearing, which is under evaluated. OBJECTIVE: To study the association between device wearing and personal air pollution exposure. METHODS: Using personal device accelerometry data collected in the context of a randomized cooking intervention in Ghana with three study arms (control, improved biomass, and liquified petroleum gas (LPG) arms; N = 1414), we account for device wearing to infer parameters of PM2.5 and CO exposure. RESULTS: Device wearing was positively associated with exposure in the control and improved biomass arms, but weakly in the LPG arm. Inferred community-level air pollution was similar across study arms (~45 µg/m3). The estimated direct contribution of individuals' cooking to PM2.5 exposure was 64 µg/m3 for the control arm, 74 µg/m3 for improved biomass, and 6 µg/m3 for LPG. Arm-specific average PM2.5 exposure at near-maximum wearing was significantly lower in the LPG arm as compared to the improved biomass and control arms. Analysis of personal CO exposure mirrored PM2.5 results. CONCLUSIONS: Personal monitor wearing was positively associated with average air pollution exposure, emphasizing the importance of high device wearing during monitoring periods and directly assessing device wearing for each deployment. SIGNIFICANCE: We demonstrate that personal monitor wearing data can be used to refine exposure estimates and infer unobserved parameters related to the timing and source of environmental exposures. IMPACT STATEMENTS: In a cookstove trial among pregnant women, time-resolved personal air pollution device wearing data were used to refine exposure estimates and infer unobserved exposure parameters, including community-level air pollution, the direct contribution of cooking to personal exposure, and the effect of clean cooking interventions on personal exposure. For example, in the control arm, while average 48 h personal PM2.5 exposure was 77 µg/m3, average predicted exposure at near-maximum daytime device wearing was 108 µg/m3 and 48 µg/m3 at zero daytime device wearing. Wearing-corrected average 48 h personal PM2.5 exposures were 50% lower in the LPG arm than the control and improved biomass and inferred direct cooking contributions to personal PM2.5 from LPG were 90% lower than the other arms. Our recommendation is that studies assessing personal exposures should examine the direct association between device wearing and estimated mean personal exposure.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Petroleum , Humans , Female , Pregnancy , Air Pollution, Indoor/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Cooking , Particulate Matter/analysis , Air Pollutants/analysis
18.
J Public Health Afr ; 13(3): 2205, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36277951

ABSTRACT

Background: 76% of the population in Ghana uses solid fuels as their primary source of cooking energy, including 41.3% firewood and 31.5% charcoal. Consequently, household air pollution (HAP) continues to be the leading risk factor for the majority of illness burden in the country. In the past, aggressive LPG distribution and adoption schemes have been implemented to reduce HAP in Ghana. Nevertheless, just 22% of Ghanaian households utilize LPG for cooking. Aims: The purpose of this study was to determine the viability and acceptability of four clean fuels among rural households in central Ghana, both separately and in combination. Methods: Quantitative and qualitative methods were used to conduct this study. The Kintampo Health Demographic Surveillance System was used to randomly pick ten homes who exclusively utilized biomass fuel. For each family (n = 10), we gave four stove and fuel combinations that were both clean. The stoves were utilized for two weeks, and free fuel was supplied. After each two-week trial period, interviews were conducted to gauge stove acceptance, with an emphasis on finding the specific energy requirements that each stove satisfied. Conclusions: LPG and ethanol stoves were the most popular among rural families, according to our data. In comparison to Mimi Moto and electric induction stoves, the two stoves were favoured because they were easier to use and clean, cooked faster, were deemed safer, and enabled a variety of cooking styles. Participants' stove preferences appear to be primarily influenced by two domains: 1) realizing the benefits of clean stove technology and 2) overcoming early anxiety of clean stove use, particularly LPG.

19.
Pediatr Pulmonol ; 57(9): 2136-2146, 2022 09.
Article in English | MEDLINE | ID: mdl-35614550

ABSTRACT

OBJECTIVES: Nearly 40% of African children under 5 are stunted. We leveraged the Ghana randomized air pollution and health study (GRAPHS) cohort to examine whether poorer growth was associated with worse childhood lung function. STUDY DESIGN: GRAPHS measured infant weight and length at birth and 3, 6, 9,12 months, and 4 years of age. At age 4 years, n = 567 children performed impulse oscillometry. We employed multivariable linear regression to estimate associations between birth and age 4 years anthropometry and lung function. Next, we employed latent class growth analysis (LCGA) to generate growth trajectories through age 4 years. We employed linear regression to examine associations between growth trajectory assignment and lung function. RESULTS: Birth weight and age 4 weight-for-age and height-for-age z-scores were inversely associated with airway resistance (e.g., R5 , or total airway resistance: birth weight ß = -0.90 cmH2O/L/s, 95% confidence interval [CI]: -1.64, -0.16 per 1 kg increase; and R20 , or large airway resistance: age 4 height-for-age ß = -0.40 cmH2O/L/s, 95% CI: -0.57, -0.22 per 1 unit z-score increase). Impaired growth trajectories identified through LCGA were associated with higher airway resistance, even after adjusting for age 4 body mass index. For example, children assigned to a persistently stunted trajectory had higher R5 (ß = 2.71 cmH2O/L/s, 95% CI: 1.07, 4.34) and R20 (ß = 1.43 cmH2O/L/s, 95% CI: 0.51, 2.36) as compared to normal. CONCLUSION: Children with poorer anthropometrics through to age 4 years had higher airway resistance in early childhood. These findings have implications for lifelong lung health, including pneumonia risk in childhood and reduced maximally attainable lung function in adulthood.


Subject(s)
Body Height , Lung , Adult , Birth Weight , Child , Child, Preschool , Cohort Studies , Female , Ghana/epidemiology , Humans , Infant , Infant, Newborn , Pregnancy
20.
Curr Environ Health Rep ; 9(2): 183-195, 2022 06.
Article in English | MEDLINE | ID: mdl-35389203

ABSTRACT

PURPOSE OF REVIEW: Evaluating the environmental health impacts of urban policies is critical for developing and implementing policies that lead to more healthy and equitable cities. This article aims to (1) identify research questions commonly used when evaluating the health impacts of urban policies at different stages of the policy process, (2) describe commonly used methods, and (3) discuss challenges, opportunities, and future directions. RECENT FINDINGS: In the diagnosis and design stages of the policy process, research questions aim to characterize environmental problems affecting human health and to estimate the potential impacts of new policies. Simulation methods using existing exposure-response information to estimate health impacts predominate at these stages of the policy process. In subsequent stages, e.g., during implementation, research questions aim to understand the actual policy impacts. Simulation methods or observational methods, which rely on experimental data gathered in the study area to assess the effectiveness of the policy, can be applied at these stages. Increasingly, novel techniques fuse both simulation and observational methods to enhance the robustness of impact evaluations assessing implemented policies. The policy process consists of interdependent stages, from inception to end, but most reviewed studies focus on single stages, neglecting the continuity of the policy life cycle. Studies assessing the health impacts of policies using a multi-stage approach are lacking. Most studies investigate intended impacts of policies; focusing also on unintended impacts may provide a more comprehensive evaluation of policies.


Subject(s)
Environmental Health , Policy , Cities , Health Policy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...