Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
2.
Science ; 381(6664): eadi3448, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37590370

ABSTRACT

CDC45-MCM2-7-GINS (CMG) helicase assembly is the central event in eukaryotic replication initiation. In yeast, a multi-subunit "pre-loading complex" (pre-LC) accompanies GINS to chromatin-bound MCM2-7, leading to CMG formation. Here, we report that DONSON, a metazoan protein mutated in microcephalic primordial dwarfism, is required for CMG assembly in vertebrates. Using AlphaFold to screen for protein-protein interactions followed by experimental validation, we show that DONSON scaffolds a vertebrate pre-LC containing GINS, TOPBP1, and DNA pol ε. Our evidence suggests that DONSON docks the pre-LC onto MCM2-7, delivering GINS to its binding site in CMG. A patient-derived DONSON mutation compromises CMG assembly and recapitulates microcephalic dwarfism in mice. These results unify our understanding of eukaryotic replication initiation, implicate defective CMG assembly in microcephalic dwarfism, and illustrate how in silico protein-protein interaction screening accelerates mechanistic discovery.


Subject(s)
Cell Cycle Proteins , DNA Replication , DNA-Binding Proteins , Minichromosome Maintenance Proteins , Nuclear Proteins , Animals , Humans , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins , Protein Interaction Mapping/methods , Computer Simulation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Dwarfism/genetics , Microcephaly/genetics , Xenopus laevis
3.
Curr Biol ; 33(12): 2449-2464.e8, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37267944

ABSTRACT

Blastocystis is the most prevalent microbial eukaryote in the human and animal gut, yet its role as commensal or parasite is still under debate. Blastocystis has clearly undergone evolutionary adaptation to the gut environment and possesses minimal cellular compartmentalization, reduced anaerobic mitochondria, no flagella, and no reported peroxisomes. To address this poorly understood evolutionary transition, we have taken a multi-disciplinary approach to characterize Proteromonas lacertae, the closest canonical stramenopile relative of Blastocystis. Genomic data reveal an abundance of unique genes in P. lacertae but also reductive evolution of the genomic complement in Blastocystis. Comparative genomic analysis sheds light on flagellar evolution, including 37 new candidate components implicated with mastigonemes, the stramenopile morphological hallmark. The P. lacertae membrane-trafficking system (MTS) complement is only slightly more canonical than that of Blastocystis, but notably, we identified that both organisms encode the complete enigmatic endocytic TSET complex, a first for the entire stramenopile lineage. Investigation also details the modulation of mitochondrial composition and metabolism in both P. lacertae and Blastocystis. Unexpectedly, we identify in P. lacertae the most reduced peroxisome-derived organelle reported to date, which leads us to speculate on a mechanism of constraint guiding the dynamics of peroxisome-mitochondrion reductive evolution on the path to anaerobiosis. Overall, these analyses provide a launching point to investigate organellar evolution and reveal in detail the evolutionary path that Blastocystis has taken from a canonical flagellated protist to the hyper-divergent and hyper-prevalent animal and human gut microbe.


Subject(s)
Blastocystis , Gastrointestinal Microbiome , Animals , Humans , Blastocystis/genetics , Gastrointestinal Microbiome/genetics , Mitochondria/genetics , Mitochondria/metabolism , Organelles/metabolism , Eukaryota
4.
Nat Commun ; 13(1): 6664, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333305

ABSTRACT

Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.


Subject(s)
Cell Cycle Proteins , Microcephaly , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Microcephaly/genetics , DNA Repair/genetics , Chromosomes/metabolism , Genomic Instability , DNA-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Chromosomal Proteins, Non-Histone/metabolism
5.
PLoS Negl Trop Dis ; 16(9): e0010791, 2022 09.
Article in English | MEDLINE | ID: mdl-36129968

ABSTRACT

Trypanosoma vivax is a unicellular hemoparasite, and a principal cause of animal African trypanosomiasis (AAT), a vector-borne and potentially fatal livestock disease across sub-Saharan Africa. Previously, we identified diverse T. vivax-specific genes that were predicted to encode cell surface proteins. Here, we examine the immune responses of naturally and experimentally infected hosts to these unique parasite antigens, to identify immunogens that could become vaccine candidates. Immunoprofiling of host serum shows that one particular family (Fam34) elicits a consistent IgG antibody response. This gene family, which we now call Vivaxin, encodes at least 124 transmembrane glycoproteins that display quite distinct expression profiles and patterns of genetic variation. We focused on one gene (viv-ß8) that encodes one particularly immunogenic vivaxin protein and which is highly expressed during infections but displays minimal polymorphism across the parasite population. Vaccination of mice with VIVß8 adjuvanted with Quil-A elicits a strong, balanced immune response and delays parasite proliferation in some animals but, ultimately, it does not prevent disease. Although VIVß8 is localized across the cell body and flagellar membrane, live immunostaining indicates that VIVß8 is largely inaccessible to antibody in vivo. However, our phylogenetic analysis shows that vivaxin includes other antigens shown recently to induce immunity against T. vivax. Thus, the introduction of vivaxin represents an important advance in our understanding of the T. vivax cell surface. Besides being a source of proven and promising vaccine antigens, the gene family is clearly an important component of the parasite glycocalyx, with potential to influence host-parasite interactions.


Subject(s)
Trypanosoma vivax , Vaccines , Animals , Antibody Formation , Antigens, Protozoan/genetics , Immunoglobulin G/genetics , Mice , Phylogeny , Trypanosoma vivax/genetics , Variant Surface Glycoproteins, Trypanosoma/genetics
6.
Int J Parasitol Parasites Wildl ; 19: 26-37, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36035627

ABSTRACT

In 2017, a mortality event affected Humboldt penguins at Chester Zoo (UK), which coincided with the diagnosis of avian malaria (AM) in some birds. AM is found worldwide wherever a competent mosquito vector is present, but the disease is particularly severe in penguins and other species that originate from non-endemic regions. To better understand the role of AM and manage its threat to penguin collections, Plasmodium was surveyed through PCR at Chester Zoo in mosquitoes, penguins, and dead free-living wild birds during and around the mortality event. Additional sequences were obtained from penguin fatalities from four other UK zoological collections. All sequences were integrated into phylogenetic analyses to determine parasite species and lineages. In total, 753/6459 positive mosquitoes were recorded (11.7% prevalence), reaching a weekly peak of 30% prevalence in mid-summer. Among penguin fatalities at Chester Zoo, several penguins presented signs and lesions compatible with AM; nevertheless, exoerythrocytic meronts were identified in only one case and Plasmodium spp. was identified in 5/22 birds. Phylogenetic analysis revealed at least five parasite cytb lineages of three Plasmodium species (P. matutinum, P. relictum and P. vaughani) circulating in mosquitoes at Chester Zoo; however, infections in free-living wild birds and penguins were only from P. matutinum. Plasmodium matutinum was confirmed as the cause of death of one penguin and was highly suspected to be the cause of death of another three. The lineage LINN1 was associated with 4/5 penguin infections. AM had a key role in the penguin multicausal mortality event. Understanding the risk of AM to penguin collections at Chester Zoo and elsewhere requires long-term surveillance to examine the association between Plasmodium infection and penguin mortality and the variability in parasite virulence. Surveillance of Plasmodium spp. in mosquitoes and local birds provides information about the parasite's transmission cycle locally, and could warn about infection risks to species of interest, which is essential for efficient disease control and prevention.

8.
Nature ; 602(7898): 623-631, 2022 02.
Article in English | MEDLINE | ID: mdl-35140396

ABSTRACT

The mutational landscape is shaped by many processes. Genic regions are vulnerable to mutation but are preferentially protected by transcription-coupled repair1. In microorganisms, transcription has been demonstrated to be mutagenic2,3; however, the impact of transcription-associated mutagenesis remains to be established in higher eukaryotes4. Here we show that ID4-a cancer insertion-deletion (indel) mutation signature of unknown aetiology5 characterized by short (2 to 5 base pair) deletions -is due to a transcription-associated mutagenesis process. We demonstrate that defective ribonucleotide excision repair in mammals is associated with the ID4 signature, with mutations occurring at a TNT sequence motif, implicating topoisomerase 1 (TOP1) activity at sites of genome-embedded ribonucleotides as a mechanistic basis. Such TOP1-mediated deletions occur somatically in cancer, and the ID-TOP1 signature is also found in physiological settings, contributing to genic de novo indel mutations in the germline. Thus, although topoisomerases protect against genome instability by relieving topological stress6, their activity may also be an important source of mutations in the human genome.


Subject(s)
DNA Topoisomerases, Type I , Germ Cells , Mutagenesis , Neoplasms , Animals , DNA Repair/genetics , DNA Topoisomerases, Type I/metabolism , Germ Cells/metabolism , Humans , Mutagenesis/genetics , Mutation , Neoplasms/genetics , Ribonucleotides/genetics
9.
Trends Parasitol ; 38(1): 23-36, 2022 01.
Article in English | MEDLINE | ID: mdl-34376326

ABSTRACT

An intriguing and remarkable feature of African trypanosomes is their antigenic variation system, mediated by the variant surface glycoprotein (VSG) family and fundamental to both immune evasion and disease epidemiology within host populations. Recent studies have revealed that the VSG repertoire has a complex evolutionary history. Sequence diversity, genomic organization, and expression patterns are species-specific, which may explain other variations in parasite virulence and disease pathology. Evidence also shows that we may be underestimating the extent to what VSGs are repurposed beyond their roles as variant antigens, establishing a need to examine VSG functionality more deeply. Here, we review sequence variation within the VSG gene family, and highlight the many opportunities to explore their likely diverse contributions to parasite survival.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Animals , Antigenic Variation/genetics , Membrane Glycoproteins/genetics , Trypanosoma brucei brucei/genetics , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/metabolism
10.
Nature ; 595(7865): 96-100, 2021 07.
Article in English | MEDLINE | ID: mdl-34040257

ABSTRACT

Trypanosomes are protozoan parasites that cause infectious diseases, including African trypanosomiasis (sleeping sickness) in humans and nagana in economically important livestock1,2. An effective vaccine against trypanosomes would be an important control tool, but the parasite has evolved sophisticated immunoprotective mechanisms-including antigenic variation3-that present an apparently insurmountable barrier to vaccination. Here we show, using a systematic genome-led vaccinology approach and a mouse model of Trypanosoma vivax infection4, that protective invariant subunit vaccine antigens can be identified. Vaccination with a single recombinant protein comprising the extracellular region of a conserved cell-surface protein that is localized to the flagellum membrane (which we term 'invariant flagellum antigen from T. vivax') induced long-lasting protection. Immunity was passively transferred with immune serum, and recombinant monoclonal antibodies to this protein could induce sterile protection and revealed several mechanisms of antibody-mediated immunity, including a major role for complement. Our discovery identifies a vaccine candidate for an important parasitic disease that has constrained socioeconomic development in countries in sub-Saharan Africa5, and provides evidence that highly protective vaccines against trypanosome infections can be achieved.


Subject(s)
Antigens, Protozoan/immunology , Protozoan Vaccines/immunology , Trypanosoma vivax/immunology , Trypanosomiasis, African/immunology , Trypanosomiasis, African/prevention & control , Animals , Antigens, Protozoan/chemistry , Complement System Proteins/immunology , Conserved Sequence/immunology , Disease Models, Animal , Female , Flagella/chemistry , Flagella/immunology , Mice , Mice, Inbred BALB C , Protozoan Vaccines/chemistry , Time Factors , Trypanosoma vivax/chemistry , Trypanosoma vivax/cytology , Trypanosomiasis, African/parasitology , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology
11.
ISME J ; 15(6): 1680-1694, 2021 06.
Article in English | MEDLINE | ID: mdl-33452479

ABSTRACT

Bacterial endosymbiosis has been instrumental in eukaryotic evolution, and includes both mutualistic, dependent and parasitic associations. Here we characterize an intracellular bacterium inhabiting the flagellated protist Bodo saltans (Kinetoplastida). We present a complete bacterial genome comprising a 1.39 Mb circular chromosome with 40.6% GC content. Fluorescent in situ hybridisation confirms that the endosymbiont is located adjacent to the nuclear membrane, and a detailed model of its intracellular niche is generated using serial block-face scanning electron microscopy. Phylogenomic analysis shows that the endosymbiont belongs to the Holosporales, most closely related to other α-proteobacterial endosymbionts of ciliates and amoebae. Comparative genomics indicates that it has a limited metabolism and is nutritionally host-dependent. However, the endosymbiont genome does encode diverse symbiont-specific secretory proteins, including a type VI secretion system and three separate toxin-antitoxin systems. We show that these systems are actively transcribed and hypothesize they represent a mechanism by which B. saltans becomes addicted to its endosymbiont. Consistent with this idea, attempts to cure Bodo of endosymbionts led to rapid and uniform cell death. This study adds kinetoplastid flagellates to ciliates and amoebae as hosts of Paracaedibacter-like bacteria, suggesting that these antagonistic endosymbioses became established very early in Eukaryotic evolution.


Subject(s)
Alphaproteobacteria , Kinetoplastida , Toxin-Antitoxin Systems , Eukaryota , Phylogeny , Symbiosis
13.
Genet Med ; 23(2): 408-414, 2021 02.
Article in English | MEDLINE | ID: mdl-33033404

ABSTRACT

PURPOSE: Lamins are the major component of nuclear lamina, maintaining structural integrity of the nucleus. Lamin A/C variants are well established to cause a spectrum of disorders ranging from myopathies to progeria, termed laminopathies. Phenotypes resulting from variants in LMNB1 and LMNB2 have been much less clearly defined. METHODS: We investigated exome and genome sequencing from the Deciphering Developmental Disorders Study and the 100,000 Genomes Project to identify novel microcephaly genes. RESULTS: Starting from a cohort of patients with extreme microcephaly, 13 individuals with heterozygous variants in the two human B-type lamins were identified. Recurrent variants were established to be de novo in nine cases and shown to affect highly conserved residues within the lamin ɑ-helical rod domain, likely disrupting interactions required for higher-order assembly of lamin filaments. CONCLUSION: We identify dominant pathogenic variants in LMNB1 and LMNB2 as a genetic cause of primary microcephaly, implicating a major structural component of the nuclear envelope in its etiology and defining a new form of laminopathy. The distinct nature of this lamin B-associated phenotype highlights the strikingly different developmental requirements for lamin paralogs and suggests a novel mechanism for primary microcephaly warranting future investigation.


Subject(s)
Laminopathies , Microcephaly , Humans , Lamin Type B/genetics , Microcephaly/genetics
14.
PLoS Biol ; 18(12): e3001030, 2020 12.
Article in English | MEDLINE | ID: mdl-33320856

ABSTRACT

With the ongoing COVID-19 (Coronavirus Disease 2019) pandemic, caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), there is a need for sensitive, specific, and affordable diagnostic tests to identify infected individuals, not all of whom are symptomatic. The most sensitive test involves the detection of viral RNA using RT-qPCR (quantitative reverse transcription PCR), with many commercial kits now available for this purpose. However, these are expensive, and supply of such kits in sufficient numbers cannot always be guaranteed. We therefore developed a multiplex assay using well-established SARS-CoV-2 targets alongside a human cellular control (RPP30) and a viral spike-in control (Phocine Herpes Virus 1 [PhHV-1]), which monitor sample quality and nucleic acid extraction efficiency, respectively. Here, we establish that this test performs as well as widely used commercial assays, but at substantially reduced cost. Furthermore, we demonstrate >1,000-fold variability in material routinely collected by combined nose and throat swabbing and establish a statistically significant correlation between the detected level of human and SARS-CoV-2 nucleic acids. The inclusion of the human control probe in our assay therefore provides a quantitative measure of sample quality that could help reduce false-negative rates. We demonstrate the feasibility of establishing a robust RT-qPCR assay at approximately 10% of the cost of equivalent commercial assays, which could benefit low-resource environments and make high-volume testing affordable.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , COVID-19 Testing/economics , Humans , Multiplex Polymerase Chain Reaction/economics , Reverse Transcriptase Polymerase Chain Reaction/economics , SARS-CoV-2/genetics
15.
Genes Dev ; 34(21-22): 1520-1533, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33060134

ABSTRACT

DNA replication is fundamental for cell proliferation in all organisms. Nonetheless, components of the replisome have been implicated in human disease, and here we report PRIM1 encoding the catalytic subunit of DNA primase as a novel disease gene. Using a variant classification agnostic approach, biallelic mutations in PRIM1 were identified in five individuals. PRIM1 protein levels were markedly reduced in patient cells, accompanied by replication fork asymmetry, increased interorigin distances, replication stress, and prolonged S-phase duration. Consequently, cell proliferation was markedly impaired, explaining the patients' extreme growth failure. Notably, phenotypic features distinct from those previously reported with DNA polymerase genes were evident, highlighting differing developmental requirements for this core replisome component that warrant future investigation.


Subject(s)
DNA Primase/genetics , Dwarfism/genetics , Fetal Growth Retardation/genetics , DNA Primase/chemistry , DNA Primase/deficiency , Dwarfism/diagnostic imaging , Dwarfism/pathology , Female , Fetal Growth Retardation/diagnostic imaging , Fetal Growth Retardation/pathology , Genetic Variation , Humans , Infant , Male , Pedigree , Syndrome
16.
Nat Commun ; 11(1): 3951, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32769987

ABSTRACT

Duplication of mammalian genomes requires replisomes to overcome numerous impediments during passage through open (eu) and condensed (hetero) chromatin. Typically, studies of replication stress characterize mixed populations of challenged and unchallenged replication forks, averaged across S phase, and model a single species of "stressed" replisome. Here, in cells containing potent obstacles to replication, we find two different lesion proximal replisomes. One is bound by the DONSON protein and is more frequent in early S phase, in regions marked by euchromatin. The other interacts with the FANCM DNA translocase, is more prominent in late S phase, and favors heterochromatin. The two forms can also be detected in unstressed cells. ChIP-seq of DNA associated with DONSON or FANCM confirms the bias of the former towards regions that replicate early and the skew of the latter towards regions that replicate late.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Helicases/metabolism , DNA Replication Timing , Euchromatin/metabolism , Heterochromatin/metabolism , Nuclear Proteins/metabolism , Chromatin Immunoprecipitation Sequencing , HeLa Cells , Humans , S Phase
17.
Am J Med Genet A ; 182(9): 2110-2116, 2020 09.
Article in English | MEDLINE | ID: mdl-32652690

ABSTRACT

Saul-Wilson syndrome (SWS) is a rare autosomal recessive disorder characterized by microcephalic primordial dwarfism, spondyloepimetaphyseal dysplasia, characteristic facial findings, clubfoot, brachydactyly, bilateral cataracts, and hearing loss. Recently, recurrent mutations in COG4, encoding a component of the Conserved Oligomeric Golgi (COG) complex, were identified. We created detailed growth curves for stature, weight, and head circumference, as well as weight-for-length and weight velocity charts for younger children, derived from hundreds of data points obtained by retrospective chart review from 14 individuals with molecularly-confirmed SWS. In addition, we performed statistical comparisons of height-for-age model fits before and after initiation of growth hormone supplementation, and found that this therapy does not appear to influence height in individuals with SWS. We hope that these charts will represent valuable tools for clinicians, both in assessing whether SWS seems an appropriate diagnosis, as well as to monitor growth of affected individuals. In particular, we hope that our detailed growth characterization will reduce morbidity resulting from unnecessarily aggressive nutritional interventions by well-intentioned physicians trying to promote weight gain, an unrealistic goal in this genetically-determined cause of primordial dwarfism.


Subject(s)
Dwarfism/genetics , Fetal Growth Retardation/genetics , Microcephaly/genetics , Osteochondrodysplasias/genetics , Vesicular Transport Proteins/genetics , Adolescent , Adult , Body Height/genetics , Body Height/physiology , Child , Child, Preschool , Clubfoot/diagnostic imaging , Clubfoot/genetics , Clubfoot/pathology , Dwarfism/diagnostic imaging , Dwarfism/pathology , Facies , Female , Fetal Growth Retardation/diagnostic imaging , Fetal Growth Retardation/pathology , Humans , Infant , Infant, Newborn , Male , Microcephaly/diagnostic imaging , Microcephaly/pathology , Mutation/genetics , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/pathology , Young Adult
18.
Nat Commun ; 11(1): 844, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32051413

ABSTRACT

African trypanosomes (Trypanosoma) are vector-borne haemoparasites that survive in the vertebrate bloodstream through antigenic variation of their Variant Surface Glycoprotein (VSG). Recombination, or rather segmented gene conversion, is fundamental in Trypanosoma brucei for both VSG gene switching and for generating antigenic diversity during infections. Trypanosoma vivax is a related, livestock pathogen whose VSG lack structures that facilitate gene conversion in T. brucei and mechanisms underlying its antigenic diversity are poorly understood. Here we show that species-wide VSG repertoire is broadly conserved across diverse T. vivax clinical strains and has limited antigenic repertoire. We use variant antigen profiling, coalescent approaches and experimental infections to show that recombination plays little role in diversifying T. vivax VSG sequences. These results have immediate consequences for both the current mechanistic model of antigenic variation in African trypanosomes and species differences in virulence and transmission, requiring reconsideration of the wider epidemiology of animal African trypanosomiasis.


Subject(s)
Antigenic Variation/genetics , Antigenic Variation/immunology , Recombination, Genetic/genetics , Trypanosoma vivax/genetics , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/immunology , DNA, Protozoan , Evolution, Molecular , Genome, Protozoan , Host-Parasite Interactions/immunology , Immune Evasion , Phylogeny , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Sequence Homology , Species Specificity , Transcriptome , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/immunology , Trypanosomiasis, African/immunology , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/metabolism
19.
Genet Med ; 22(5): 857-866, 2020 05.
Article in English | MEDLINE | ID: mdl-31949312

ABSTRACT

PURPOSE: Four patients with Saul-Wilson syndrome were reported between 1982 and 1994, but no additional individuals were described until 2018, when the molecular etiology of the disease was elucidated. Hence, the clinical phenotype of the disease remains poorly defined. We address this shortcoming by providing a detailed characterization of its phenotype. METHODS: Retrospective chart reviews were performed and primary radiographs assessed for all 14 individuals. Four individuals underwent detailed ophthalmologic examination by the same physician. Two individuals underwent gynecologic evaluation. Z-scores for height, weight, head circumference and body mass index were calculated at different ages. RESULTS: All patients exhibited short stature, with sharp decline from the mean within the first months of life, and a final height Z-score between -4 and -8.5 standard deviations. The facial and radiographic features evolved over time. Intermittent neutropenia was frequently observed. Novel findings included elevation of liver transaminases, skeletal fragility, rod-cone dystrophy, and cystic macular changes. CONCLUSIONS: Saul-Wilson syndrome presents a remarkably uniform phenotype, and the comprehensive description of our cohort allows for improved understanding of the long-term morbidity of the condition, establishment of follow-up recommendations for affected individuals, and documentation of the natural history into adulthood for comparison with treated patients, when therapeutics become available.


Subject(s)
Dwarfism , Adult , Female , Humans , Phenotype , Retrospective Studies
20.
Nat Cancer ; 1(8): 840-854, 2020 08.
Article in English | MEDLINE | ID: mdl-35122047

ABSTRACT

The mechanisms generating cancer-initiating mutations are not well understood. Sonic hedgehog (SHH) pathway activation is frequent in medulloblastoma (MB), with PTCH1 mutations being a common initiating event. Here we investigated the role of the developmental mitogen SHH in initiating carcinogenesis in the cells of origin: granule cell progenitors (GCPs). We delineate a molecular mechanism for tumor initiation in MB. Exposure of GCPs to Shh causes a distinct form of DNA replication stress, increasing both origin firing and fork velocity. Shh promotes DNA helicase loading and activation, with increased Cdc7-dependent origin firing. The S-phase duration is reduced and hyper-recombination occurs, causing copy number neutral loss of heterozygosity-a frequent event at the PTCH1/ptch1 locus. Moreover, Cdc7 inhibition to attenuate origin firing reduces recombination and preneoplastic tumor formation in mice. Therefore, tissue-specific replication stress induced by Shh promotes loss of heterozygosity, which in tumor-prone Ptch1+/- GCPs results in loss of this tumor suppressor-an early cancer-initiating event.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Carcinogenesis/genetics , Cerebellar Neoplasms/genetics , DNA Replication/genetics , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...