Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
Article in English | MEDLINE | ID: mdl-38992473

ABSTRACT

BACKGROUND: The discriminatory and racist policy of historical redlining in the United States (U.S.) during the 1930s played a role in perpetuating contemporary environmental health disparities. OBJECTIVE: Our objectives were to determine associations between home and school pollutant exposure (fine particulate matter (PM2.5), nitrogen dioxide (NO2)) and respiratory outcomes (Composite Asthma Severity Index (CASI), lung function) among school-aged children with asthma and examine whether associations differed between children who resided and/or attended school in historically redlined compared to non-redlined neighborhoods. METHODS: Children ages 6 to 17 with moderate-to-severe asthma (N=240) from 9 U.S. cities were included. Combined home and school exposure to PM2.5 and NO2 was calculated based on geospatially assessed monthly averaged outdoor pollutant concentrations. Repeated measures of CASI and lung function were collected. RESULTS: Overall, 37.5% of children resided and/or attended schools in historically redlined neighborhoods. Children in historically redlined neighborhoods had greater exposure to NO2 (median: 15.4 vs 12.1 ppb) and closer distance to a highway (median: 0.86 vs 1.23 km), compared to those in non-redlined neighborhoods (p<0.01). Overall, PM2.5 was not associated with asthma severity or lung function. However, among children in redlined neighborhoods, higher PM2.5 was associated with worse asthma severity (p<0.005). No association was observed between pollutants and lung function or asthma severity among children in non-redlined neighborhoods (p>0.005). CONCLUSIONS: Our findings highlight the significance of historical redlining and current environmental health disparities among school-aged children with asthma, specifically, the environmental injustice of PM2.5 exposure and its associations with respiratory health.

2.
Front Zool ; 21(1): 17, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902827

ABSTRACT

Many questions in biology benefit greatly from the use of a variety of model systems. High-throughput sequencing methods have been a triumph in the democratization of diverse model systems. They allow for the economical sequencing of an entire genome or transcriptome of interest, and with technical variations can even provide insight into genome organization and the expression and regulation of genes. The analysis and biological interpretation of such large datasets can present significant challenges that depend on the 'scientific status' of the model system. While high-quality genome and transcriptome references are readily available for well-established model systems, the establishment of such references for an emerging model system often requires extensive resources such as finances, expertise and computation capabilities. The de novo assembly of a transcriptome represents an excellent entry point for genetic and molecular studies in emerging model systems as it can efficiently assess gene content while also serving as a reference for differential gene expression studies. However, the process of de novo transcriptome assembly is non-trivial, and as a rule must be empirically optimized for every dataset. For the researcher working with an emerging model system, and with little to no experience with assembling and quantifying short-read data from the Illumina platform, these processes can be daunting. In this guide we outline the major challenges faced when establishing a reference transcriptome de novo and we provide advice on how to approach such an endeavor. We describe the major experimental and bioinformatic steps, provide some broad recommendations and cautions for the newcomer to de novo transcriptome assembly and differential gene expression analyses. Moreover, we provide an initial selection of tools that can assist in the journey from raw short-read data to assembled transcriptome and lists of differentially expressed genes.

3.
Article in English | MEDLINE | ID: mdl-38878861

ABSTRACT

Increased understanding of the underlying pathophysiology has highlighted the heterogeneity of asthma and identified that most children with asthma have type 2 inflammation with elevated biomarkers, such as blood eosinophils and/or fractional exhaled nitric oxide. Although in the past most of these children may have been categorized as having allergic asthma, identifying the type 2 inflammatory phenotype provides a mechanism to explain both allergic and non-allergic triggers in pediatric patients with asthma. Most children achieve control with low-to-medium doses of inhaled corticosteroids, however, in a small but significant proportion of children, asthma remains uncontrolled despite maximum conventional treatment, with an increased risk of severe exacerbations. In this review, we focus on the role of type 2 inflammation and allergic processes in children with asthma, together with evidence of the efficacy of available treatment options for those who experience severe symptoms.

4.
Article in English | MEDLINE | ID: mdl-38869320

ABSTRACT

RATIONALE: Identifying the root causes of racial disparities in childhood asthma is critical for health equity. OBJECTIVES: To determine if the 1930's racist policy of redlining led to present-day disparities in childhood asthma by increasing community-level poverty and decreasing neighborhood socioeconomic position (SEP). METHODS: We categorized census tracts at birth of participants from the Children's Respiratory and Environmental Workgroup birth cohort consortium into A, B, C, or D categories as defined by the Home Owners Loan Corporation (HOLC), with D being the highest perceived risk. Surrogates of present-day neighborhood-level SEP were determined for each tract including the percentage of low-income households, the CDC's social vulnerability index (SVI), and other tract-level variables. We performed causal mediation analysis, which, under the assumption of no unmeasured confounding, estimates the direct and mediated pathways by which redlining may cause asthma disparities through census tract-level mediators adjusting for individual-level covariates. MEASUREMENTS AND MAIN RESULTS: Of 4,849 children, the cumulative incidence of asthma through age 11 was 26.6% and 13.2% resided in census tracts with a HOLC grade of D. In mediation analyses, residing in grade D tracts (aOR = 1.03 [95%CI 1.01,1.05]) was significantly associated with childhood asthma, with 79% of this increased risk mediated by percentage of low-income households; results were similar for SVI and other tract-level variables. CONCLUSIONS: The historical structural racist policy of redlining led to present-day asthma disparities in part through decreased neighborhood SEP. Policies aimed at reversing the effects of structural racism should be considered to create more just, equitable, and healthy communities.

5.
Article in English | MEDLINE | ID: mdl-38718950

ABSTRACT

BACKGROUND: Cockroach allergy contributes to morbidity among urban children with asthma. Few trials address the effect of subcutaneous immunotherapy (SCIT) with cockroach allergen among these at-risk children. OBJECTIVES: We sought to determine whether nasal allergen challenge (NAC) responses to cockroach allergen would improve following 1 year of SCIT. METHODS: Urban children with asthma, who were cockroach-sensitized and reactive on NAC, participated in a year-long randomized double-blind placebo-controlled SCIT trial using German cockroach extract. The primary endpoint was the change in mean Total Nasal Symptom Score (TNSS) during NAC after 12 months of SCIT. Changes in nasal transcriptomic responses during NAC, skin prick test wheal size, serum allergen-specific antibody production, and T-cell responses to cockroach allergen were assessed. RESULTS: Changes in mean NAC TNSS did not differ between SCIT-assigned (n = 28) versus placebo-assigned (n = 29) participants (P = .63). Nasal transcriptomic responses correlated with TNSS, but a treatment effect was not observed. Cockroach serum-specific IgE decreased to a similar extent in both groups, while decreased cockroach skin prick test wheal size was greater among SCIT participants (P = .04). A 200-fold increase in cockroach serum-specific IgG4 was observed among subjects receiving SCIT (P < .001) but was unchanged in the placebo group. T-cell IL-4 responses following cockroach allergen stimulation decreased to a greater extent among SCIT versus placebo (P = .002), while no effect was observed for IL-10 or IFN-γ. CONCLUSIONS: A year of SCIT failed to alter NAC TNSS and nasal transcriptome responses to cockroach allergen challenge despite systemic effects on allergen-specific skin tests, induction of serum-specific IgG4 serum production and down-modulation of allergen-stimulated T-cell responses.

6.
Am J Epidemiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38775275

ABSTRACT

The Human Epidemiology and Response to SARS-CoV-2 (HEROS) is a prospective multi-city 6-month incidence study which was conducted from May 2020-February 2021. The objectives were to identify risk factors for SARS-CoV-2 infection and household transmission among children and people with asthma and allergic diseases, and to use the host nasal transcriptome sampled longitudinally to understand infection risk and sequelae at the molecular level. To overcome challenges of clinical study implementation due to the coronavirus pandemic, this surveillance study used direct-to-participant methods to remotely enroll and prospectively follow eligible children who are participants in other NIH-funded pediatric research studies and their household members. Households participated in weekly surveys and biweekly nasal sampling regardless of symptoms. The aim of this report is to widely share the methods and study instruments and to describe the rationale, design, execution, logistics and characteristics of a large, observational, household-based, remote cohort study of SARS-CoV-2 infection and transmission in households with children. The study enrolled a total of 5,598 individuals, including 1,913 principal participants (children), 1,913 primary caregivers, 729 secondary caregivers and 1,043 other household children. This study was successfully implemented without necessitating any in-person research visits and provides an approach for rapid execution of clinical research.

7.
Pediatr Allergy Immunol ; 35(4): e14129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38664926

ABSTRACT

Monitoring is a major component of asthma management in children. Regular monitoring allows for diagnosis confirmation, treatment optimization, and natural history review. Numerous factors that may affect disease activity and patient well-being need to be monitored: response and adherence to treatment, disease control, disease progression, comorbidities, quality of life, medication side-effects, allergen and irritant exposures, diet and more. However, the prioritization of such factors and the selection of relevant assessment tools is an unmet need. Furthermore, rapidly developing technologies promise new opportunities for closer, or even "real-time," monitoring between visits. Following an approach that included needs assessment, evidence appraisal, and Delphi consensus, the PeARL Think Tank, in collaboration with major international professional and patient organizations, has developed a set of 24 recommendations on pediatric asthma monitoring, to support healthcare professionals in decision-making and care pathway design.


Subject(s)
Asthma , Humans , Asthma/diagnosis , Asthma/therapy , Child , Quality of Life , Anti-Asthmatic Agents/therapeutic use , Delphi Technique , Monitoring, Physiologic/methods
8.
J Allergy Clin Immunol ; 153(6): 1604-1610.e2, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438085

ABSTRACT

BACKGROUND: The atopic march refers to the coexpression and progression of atopic diseases in childhood, often beginning with atopic dermatitis (AD), although children may not progress through each atopic disease. OBJECTIVE: We hypothesized that future atopic disease expression is modified by AD phenotype and that these differences result from underlying dysregulation of cytokine signaling. METHODS: Children (n = 285) were enrolled into the Childhood Origins of Asthma (COAST) birth cohort and followed prospectively. Rates of AD, food allergy, allergic rhinitis, and asthma were assessed longitudinally from birth to 18 years of age. Associations between AD phenotype and food allergy, allergic rhinitis, asthma, allergic sensitization, exhaled nitric oxide, and lung function were determined. Peripheral blood mononuclear cell responses (IL-5, IL-10, IL-13, IFN-γ) to dust mite, phytohemagglutinin, Staphylococcus aureus Cowan I, and tetanus toxoid were compared among AD phenotypes. RESULTS: AD at year 1 was associated with an increased risk of food allergy (P = .004). Both persistent and late-onset AD were associated with an increased risk of asthma (P < .001), rhinitis (P < .001), elevated total IgE (P < .001), percentage of aeroallergens with detectable IgE (P < .001), and elevated exhaled nitric oxide (P = .002). Longitudinal analyses did not reveal consistent differences in peripheral blood mononuclear cell responses among dermatitis phenotypes. CONCLUSION: AD phenotype is associated with differential expression of other atopic diseases. Our findings suggest that peripheral blood cytokine dysregulation is not a mechanism underlying this process, and immune dysregulation may be mediated at mucosal surfaces or in secondary lymphoid organs.


Subject(s)
Cytokines , Dermatitis, Atopic , Leukocytes, Mononuclear , Phenotype , Humans , Dermatitis, Atopic/immunology , Child, Preschool , Child , Male , Female , Cytokines/immunology , Cytokines/metabolism , Infant , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Adolescent , Asthma/immunology , Food Hypersensitivity/immunology , Infant, Newborn , Immunoglobulin E/blood , Immunoglobulin E/immunology , Rhinitis, Allergic/immunology , Longitudinal Studies
9.
Article in English | MEDLINE | ID: mdl-38485057

ABSTRACT

BACKGROUND: MUPPITS-2 was a randomized, placebo-controlled clinical trial that demonstrated mepolizumab (anti-IL-5) reduced exacerbations and blood and airway eosinophils in urban children with severe eosinophilic asthma. Despite this reduction in eosinophilia, exacerbation risk persisted in certain patients treated with mepolizumab. This raises the possibility that subpopulations of airway eosinophils exist that contribute to breakthrough exacerbations. OBJECTIVE: We aimed to determine the effect of mepolizumab on airway eosinophils in childhood asthma. METHODS: Sputum samples were obtained from 53 MUPPITS-2 participants. Airway eosinophils were characterized using mass cytometry and grouped into subpopulations using unsupervised clustering analyses of 38 surface and intracellular markers. Differences in frequency and immunophenotype of sputum eosinophil subpopulations were assessed based on treatment arm and frequency of exacerbations. RESULTS: Median sputum eosinophils were significantly lower among participants treated with mepolizumab compared with placebo (58% lower, 0.35% difference [95% CI 0.01, 0.74], P = .04). Clustering analysis identified 3 subpopulations of sputum eosinophils with varied expression of CD62L. CD62Lint and CD62Lhi eosinophils exhibited significantly elevated activation marker and eosinophil peroxidase expression, respectively. In mepolizumab-treated participants, CD62Lint and CD62Lhi eosinophils were more abundant in participants who experienced exacerbations than in those who did not (100% higher for CD62Lint, 0.04% difference [95% CI 0.0, 0.13], P = .04; 93% higher for CD62Lhi, 0.21% difference [95% CI 0.0, 0.77], P = .04). CONCLUSIONS: Children with eosinophilic asthma treated with mepolizumab had significantly lower sputum eosinophils. However, CD62Lint and CD62Lhi eosinophils were significantly elevated in children on mepolizumab who had exacerbations, suggesting that eosinophil subpopulations exist that contribute to exacerbations despite anti-IL-5 treatment.

11.
J Allergy Clin Immunol ; 153(6): 1563-1573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38423369

ABSTRACT

BACKGROUND: Five distinct respiratory phenotypes based on latent classes of longitudinal patterns of wheezing, allergic sensitization. and pulmonary function measured in urban children from ages from 0 to 7 years have previously been described. OBJECTIVE: Our aim was to determine whether distinct respiratory phenotypes are associated with early-life upper respiratory microbiota development and environmental microbial exposures. METHODS: Microbiota profiling was performed using 16S ribosomal RNA-based sequencing of nasal samples collected at age 12 months (n = 120) or age 36 months (n = 142) and paired house dust samples collected at 3 months (12-month, n = 73; 36-month, n = 90) from all 4 centers in the Urban Environment and Childhood Asthma (URECA) cohort. RESULTS: In these high-risk urban children, nasal microbiota increased in diversity between ages 12 and 36 months (ß = 2.04; P = .006). Age-related changes in microbiota evenness differed significantly by respiratory phenotypes (interaction P = .0007), increasing most in the transient wheeze group. At age 12 months, respiratory illness (R2 = 0.055; P = .0001) and dominant bacterial genus (R2 = 0.59; P = .0001) explained variance in nasal microbiota composition, and enrichment of Moraxella and Haemophilus members was associated with both transient and high-wheeze respiratory phenotypes. By age 36 months, nasal microbiota was significantly associated with respiratory phenotypes (R2 = 0.019; P = .0376), and Moraxella-dominated microbiota was associated specifically with atopy-associated phenotypes. Analysis of paired house dust and nasal samples indicated that 12 month olds with low wheeze and atopy incidence exhibited the largest number of shared bacterial taxa with their environment. CONCLUSION: Nasal microbiota development over the course of early childhood and composition at age 3 years are associated with longitudinal respiratory phenotypes. These data provide evidence supporting an early-life window of airway microbiota development that is influenced by environmental microbial exposures in infancy and associates with wheeze- and atopy-associated respiratory phenotypes through age 7 years.


Subject(s)
Microbiota , Phenotype , Respiratory Sounds , Urban Population , Humans , Infant , Child, Preschool , Male , Female , Longitudinal Studies , Asthma/microbiology , Asthma/epidemiology , Dust/analysis , Dust/immunology , Environmental Exposure , Nose/microbiology , RNA, Ribosomal, 16S/genetics , Child
12.
JAMA Netw Open ; 7(2): e240535, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38416497

ABSTRACT

Importance: Exposure to outdoor air pollution contributes to childhood asthma development, but many studies lack the geographic, racial and ethnic, and socioeconomic diversity to evaluate susceptibility by individual-level and community-level contextual factors. Objective: To examine early life exposure to fine particulate matter (PM2.5) and nitrogen oxide (NO2) air pollution and asthma risk by early and middle childhood, and whether individual and community-level characteristics modify associations between air pollution exposure and asthma. Design, Setting, and Participants: This cohort study included children enrolled in cohorts participating in the Children's Respiratory and Environmental Workgroup consortium. The birth cohorts were located throughout the US, recruited between 1987 and 2007, and followed up through age 11 years. The survival analysis was adjusted for mother's education, parental asthma, smoking during pregnancy, child's race and ethnicity, sex, neighborhood characteristics, and cohort. Statistical analysis was performed from February 2022 to December 2023. Exposure: Early-life exposures to PM2.5 and NO2 according to participants' birth address. Main Outcomes and Measures: Caregiver report of physician-diagnosed asthma through early (age 4 years) and middle (age 11 years) childhood. Results: Among 5279 children included, 1659 (31.4%) were Black, 835 (15.8%) were Hispanic, 2555 (48.4%) where White, and 229 (4.3%) were other race or ethnicity; 2721 (51.5%) were male and 2596 (49.2%) were female; 1305 children (24.7%) had asthma by 11 years of age and 954 (18.1%) had asthma by 4 years of age. Mean values of pollutants over the first 3 years of life were associated with asthma incidence. A 1 IQR increase in NO2 (6.1 µg/m3) was associated with increased asthma incidence among children younger than 5 years (HR, 1.25 [95% CI, 1.03-1.52]) and children younger than 11 years (HR, 1.22 [95% CI, 1.04-1.44]). A 1 IQR increase in PM2.5 (3.4 µg/m3) was associated with increased asthma incidence among children younger than 5 years (HR, 1.31 [95% CI, 1.04-1.66]) and children younger than 11 years (OR, 1.23 [95% CI, 1.01-1.50]). Associations of PM2.5 or NO2 with asthma were increased when mothers had less than a high school diploma, among Black children, in communities with fewer child opportunities, and in census tracts with higher percentage Black population and population density; for example, there was a significantly higher association between PM2.5 and asthma incidence by younger than 5 years of age in Black children (HR, 1.60 [95% CI, 1.15-2.22]) compared with White children (HR, 1.17 [95% CI, 0.90-1.52]). Conclusions and Relevance: In this cohort study, early life air pollution was associated with increased asthma incidence by early and middle childhood, with higher risk among minoritized families living in urban communities characterized by fewer opportunities and resources and multiple environmental coexposures. Reducing asthma risk in the US requires air pollution regulation and reduction combined with greater environmental, educational, and health equity at the community level.


Subject(s)
Air Pollution , Asthma , Child , Pregnancy , Female , Male , Humans , Child, Preschool , Incidence , Cohort Studies , Nitrogen Dioxide , Asthma/epidemiology , Asthma/etiology , Air Pollution/adverse effects , Particulate Matter/adverse effects
13.
J Allergy Clin Immunol ; 154(1): 101-110, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38272375

ABSTRACT

BACKGROUND: Blood eosinophils and fractional exhaled nitric oxide (Feno) are prognostic biomarkers for exacerbations and predict lung function responses to dupilumab in adolescents and adults with asthma. OBJECTIVE: We evaluated the relationship between baseline blood eosinophils and Feno and response to dupilumab in children with asthma. METHODS: Children aged 6 to 11 years with uncontrolled moderate-to-severe asthma (n = 408) were randomized to receive dupilumab 100/200 mg by body weight or volume-matched placebo every 2 weeks for 52 weeks. Annualized exacerbation rate (AER) reduction and least squares mean change in prebronchodilator percent predicted forced expiratory volume in 1 second (ppFEV1) at week 12 were assessed according to cutoff baseline levels for Feno (<20 ppb vs ≥20 ppb) and blood eosinophil count (<150, ≥150 to <300, ≥300 to <500, and ≥500 cells/µL). Quadrant analyses in populations defined by biomarker thresholds and spline models across continuous end points assessed the relationship with Feno and eosinophil count. Interaction testing evaluated the independent roles of Feno and blood eosinophils as predictive markers. RESULTS: Exacerbation risk and magnitude of AER reduction increased in subgroups with higher baseline biomarker levels. Quadrant analyses revealed that disease of patients with either elevated Feno or eosinophil counts demonstrated a clinical response to dupilumab. Interaction testing indicated blood eosinophil counts or Feno independently added value as predictive biomarkers. CONCLUSIONS: In children with uncontrolled moderate-to-severe asthma, blood eosinophil counts and Feno are clinically relevant biomarkers to identify those at risk for asthma exacerbations, as well as those with disease with clinical response to dupilumab. TRIAL REGISTRATION: Liberty Asthma VOYAGE ClinicalTrials.gov NCT02948959.


Subject(s)
Antibodies, Monoclonal, Humanized , Asthma , Biomarkers , Eosinophils , Nitric Oxide , Humans , Asthma/drug therapy , Asthma/diagnosis , Asthma/metabolism , Child , Eosinophils/immunology , Male , Female , Nitric Oxide/metabolism , Prognosis , Antibodies, Monoclonal, Humanized/therapeutic use , Fractional Exhaled Nitric Oxide Testing , Leukocyte Count , Anti-Asthmatic Agents/therapeutic use , Exhalation
14.
Lancet Respir Med ; 12(1): 45-54, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37956679

ABSTRACT

BACKGROUND: Dupilumab efficacy and safety in children aged 6-11 years with uncontrolled, moderate-to-severe asthma were shown in the VOYAGE study-a 52-week, multinational, multicentre, phase 3 randomised, double-blind, placebo-controlled trial. We aimed to evaluate the long-term safety and efficacy of dupilumab in children with moderate-to-severe asthma who previously participated in the VOYAGE study. METHODS: 365 of 408 children with moderate-to-severe asthma from VOYAGE enrolled in EXCURSION, a 52 week, open-label extension study conducted at 70 centres across 17 countries. 240 children continued with add-on dupilumab (dosed according to bodyweight: 100 mg for those weighing ≤30 kg and 200 mg for those weighing more than 30 kg at EXCURSION baseline) once every 2 weeks administered by subcutaneous injection (dupilumab/dupilumab group) and 125 children on placebo during VOYAGE initiated dupilumab (100 or 200 mg, according to bodyweight), once every 2 weeks administered by subcutaneous injection (placebo/dupilumab group). Following a protocol amendment, for a subset of children weighing 30 kg or less, the dose was changed to 300 mg once every 4 weeks. The primary endpoint for the open-label extension study was the number and proportion of patients with any treatment-emergent adverse event (TEAE) during the 52-week study period in the overall population (defined as children aged 6-11 years old with moderate-to-severe asthma who previously completed VOYAGE). Statistical analyses were descriptive. This study is registered with ClinicalTrials.gov (NCT03560466; EXCURSION). FINDINGS: Children who completed VOYAGE were eligible to enrol in EXCURSION between June 21, 2018 and Aug 18, 2020. During EXCURSION, the safety profile and proportion of patients reporting TEAEs were consistent with those observed during the parent study (VOYAGE). In the overall population, 232 (63·6%) of 365 patients experienced at least one TEAE (dupilumab/dupilumab: 147 [61·3%]; placebo/dupilumab: 85 [68·0%]). The most frequently reported TEAEs were nasopharyngitis, pharyngitis, and upper respiratory tract infections. INTERPRETATION: In EXCURSION, long-term treatment with dupilumab was well tolerated with an acceptable safety profile. FUNDING: Sanofi and Regeneron Pharmaceuticals.


Subject(s)
Antibodies, Monoclonal, Humanized , Asthma , Child , Humans , Antibodies, Monoclonal, Humanized/adverse effects , Asthma/drug therapy , Double-Blind Method , Severity of Illness Index , Treatment Outcome , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Clinical Trials, Phase III as Topic
15.
J Allergy Clin Immunol ; 153(3): 809-820, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37944567

ABSTRACT

BACKGROUND: Most genetic studies of asthma and allergy have focused on common variation in individuals primarily of European ancestry. Studying the role of rare variation in quantitative phenotypes and in asthma phenotypes in populations of diverse ancestries can provide additional, important insights into the development of these traits. OBJECTIVE: We sought to examine the contribution of rare variants to different asthma- or allergy-associated quantitative traits in children with diverse ancestries and explore their role in asthma phenotypes. METHODS: We examined whole-genome sequencing data from children participants in longitudinal studies of asthma (n = 1035; parent-identified as 67% Black and 25% Hispanic) to identify rare variants (minor allele frequency < 0.01). We assigned variants to genes and tested for associations using an omnibus variant-set test between each of 24,902 genes and 8 asthma-associated quantitative traits. On combining our results with external data on predicted gene expression in humans and mouse knockout studies, we identified 3 candidate genes. A burden of rare variants in each gene and in a combined 3-gene score was tested for its associations with clinical phenotypes of asthma. Finally, published single-cell gene expression data in lower airway mucosal cells after allergen challenge were used to assess transcriptional responses to allergen. RESULTS: Rare variants in USF1 were significantly associated with blood neutrophil count (P = 2.18 × 10-7); rare variants in TNFRSF21 with total IgE (P = 6.47 × 10-6) and PIK3R6 with eosinophil count (P = 4.10 × 10-5) reached suggestive significance. These 3 findings were supported by independent data from human and mouse studies. A burden of rare variants in TNFRSF21 and in a 3-gene score was associated with allergy-related phenotypes in cohorts of children with mild and severe asthma. Furthermore, TNFRSF21 was significantly upregulated in bronchial basal epithelial cells from adults with allergic asthma but not in adults with allergies (but not asthma) after allergen challenge. CONCLUSIONS: We report novel associations between rare variants in genes and allergic and inflammatory phenotypes in children with diverse ancestries, highlighting TNFRSF21 as contributing to the development of allergic asthma.


Subject(s)
Asthma , Hypersensitivity , Adult , Child , Humans , Animals , Mice , Asthma/genetics , Hypersensitivity/genetics , Genetic Association Studies , Phenotype , Allergens , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Receptors, Tumor Necrosis Factor
16.
Proc Natl Acad Sci U S A ; 120(48): e2311901120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37983489

ABSTRACT

Zebra and quagga mussels (Dreissena spp.) are invasive freshwater biofoulers that perpetrate devastating economic and ecological impact. Their success depends on their ability to anchor onto substrates with protein-based fibers known as byssal threads. Yet, compared to other mussel lineages, little is understood about the proteins comprising their fibers or their evolutionary history. Here, we investigated the hierarchical protein structure of Dreissenid byssal threads and the process by which they are fabricated. Unique among bivalves, we found that threads possess a predominantly ß-sheet crystalline structure reminiscent of spider silk. Further analysis revealed unexpectedly that the Dreissenid thread protein precursors are mechanoresponsive α-helical proteins that are mechanically processed into ß-crystallites during thread formation. Proteomic analysis of the byssus secretory organ and byssus fibers revealed a family of ultrahigh molecular weight (354 to 467 kDa) asparagine-rich (19 to 20%) protein precursors predicted to form α-helical coiled coils. Moreover, several independent lines of evidence indicate that the ancestral predecessor of these proteins was likely acquired via horizontal gene transfer. This chance evolutionary event that transpired at least 12 Mya has endowed Dreissenids with a distinctive and effective fiber formation mechanism, contributing significantly to their success as invasive species and possibly, inspiring new materials design.


Subject(s)
Bivalvia , Dreissena , Animals , Silk/chemistry , Proteomics , Bivalvia/chemistry , Protein Precursors/metabolism
18.
J Med Virol ; 95(8): e29058, 2023 08.
Article in English | MEDLINE | ID: mdl-37638498

ABSTRACT

Rhinoviruses (RVs) can cause severe wheezing illnesses in young children and patients with asthma. Vaccine development has been hampered by the multitude of RV types with little information about cross-neutralization. We previously showed that neutralizing antibody (nAb) responses to RV-C are detected twofold to threefold more often than those to RV-A throughout childhood. Based on those findings, we hypothesized that RV-C infections are more likely to induce either cross-neutralizing or longer-lasting antibody responses compared with RV-A infections. We pooled RV diagnostic data from multiple studies of children with respiratory illnesses and compared the expected versus observed frequencies of sequential infections with RV-A or RV-C types using log-linear regression models. We tested longitudinally collected plasma samples from children to compare the duration of RV-A versus RV-C nAb responses. Our models identified limited reciprocal cross-neutralizing relationships for RV-A (A12-A75, A12-A78, A20-A78, and A75-A78) and only one for RV-C (C2-C40). Serologic analysis using reference mouse sera and banked human plasma samples confirmed that C40 infections induced nAb responses with modest heterotypic activity against RV-C2. Mixed-effects regression modeling of longitudinal human plasma samples collected from ages 2 to 18 years demonstrated that RV-A and RV-C illnesses induced nAb responses of similar duration. These results indicate that both RV-A and RV-C nAb responses have only modest cross-reactivity that is limited to genetically similar types. Contrary to our initial hypothesis, RV-C species may include even fewer cross-neutralizing types than RV-A, whereas the duration of nAb responses during childhood is similar between the two species. The modest heterotypic responses suggest that RV vaccines must have a broad representation of prevalent types.


Subject(s)
Asthma , Rhinovirus , Child , Humans , Animals , Mice , Child, Preschool , Antibody Formation , Antibodies, Neutralizing , Cross Reactions
19.
JAMA Netw Open ; 6(8): e2330495, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37610749

ABSTRACT

Importance: Few population-based studies in the US collected individual-level data from families during the COVID-19 pandemic. Objective: To examine differences in COVID-19 pandemic-related experiences in a large sociodemographically diverse sample of children and caregivers. Design, Setting, and Participants: The Environmental influences on Child Health Outcomes (ECHO) multi-cohort consortium is an ongoing study that brings together 64 individual cohorts with participants (24 757 children and 31 700 caregivers in this study) in all 50 US states and Puerto Rico. Participants who completed the ECHO COVID-19 survey between April 2020 and March 2022 were included in this cross-sectional analysis. Data were analyzed from July 2021 to September 2022. Main Outcomes and Measures: Exposures of interest were caregiver education level, child life stage (infant, preschool, middle childhood, and adolescent), and urban or rural (population <50 000) residence. Dependent variables included COVID-19 infection status and testing; disruptions to school, child care, and health care; financial hardships; and remote work. Outcomes were examined separately in logistic regression models mutually adjusted for exposures of interest and race, ethnicity, US Census division, sex, and survey administration date. Results: Analyses included 14 646 children (mean [SD] age, 7.1 [4.4] years; 7120 [49%] female) and 13 644 caregivers (mean [SD] age, 37.6 [7.2] years; 13 381 [98%] female). Caregivers were racially (3% Asian; 16% Black; 12% multiple race; 63% White) and ethnically (19% Hispanic) diverse and comparable with the US population. Less than high school education (vs master's degree or more) was associated with more challenges accessing COVID-19 tests (adjusted odds ratio [aOR], 1.88; 95% CI, 1.06-1.58), lower odds of working remotely (aOR, 0.04; 95% CI, 0.03-0.07), and more food access concerns (aOR, 4.14; 95% CI, 3.20-5.36). Compared with other age groups, young children (age 1 to 5 years) were least likely to receive support from schools during school closures, and their caregivers were most likely to have challenges arranging childcare and concerns about work impacts. Rural caregivers were less likely to rank health concerns (aOR, 0.77; 95% CI, 0.69-0.86) and social distancing (aOR, 0.82; 95% CI, 0.73-0.91) as top stressors compared with urban caregivers. Conclusions: Findings in this cohort study of US families highlighted pandemic-related burdens faced by families with lower socioeconomic status and young children. Populations more vulnerable to public health crises should be prioritized in recovery efforts and future planning.


Subject(s)
COVID-19 , Pandemics , Sociodemographic Factors , Humans , Age Factors , Caregivers , Cohort Studies , COVID-19/epidemiology , Family , Pandemics/statistics & numerical data , Race Factors , Surveys and Questionnaires , United States/epidemiology , Vulnerable Populations , Male , Female , Child , Adult
20.
J Allergy Clin Immunol Pract ; 11(9): 2673-2682, 2023 09.
Article in English | MEDLINE | ID: mdl-37517797

ABSTRACT

The availability of biologic agents for patients with severe asthma has increased dramatically over the last several decades. The absence of direct head-to-head comparative data and relative lack of biomarkers to predict response can make it difficult to choose the right biologic medication for a given patient. Selecting a biologic agent for the pediatric population presents further challenges due to more limited approved biologic agents and fewer clinical trials in children. In addition, the outcome data that are currently available suggest that treatment responses for a given biologic may be different between adult and pediatric patients. To better understand this possible difference in treatment response, this review focuses on the available efficacy data for biologics evaluated in adult and pediatric patients with severe asthma in addition to other considerations when choosing a biologic agent. Finally, this review discusses how asthma phenotypes differ across age groups and their contributions to the responses to biologic treatment across age groups.


Subject(s)
Anti-Asthmatic Agents , Asthma , Biological Products , Child , Humans , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Biological Factors/therapeutic use , Biological Products/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...