Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(15): e2320194121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38568967

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Endoribonucleases/metabolism , Signal Transduction , Antiviral Agents
2.
J Virol ; 98(3): e0188323, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38376197

ABSTRACT

Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double-stranded RNA (dsRNA) sensor protein kinase receptor (PKR) pathway plays a critical role in the cell anti-viral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the anti-viral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro- and anti-viral activities.IMPORTANCEAs with many other viruses, the prototypic Old World mammarenavirus LCMV can interfere with the host cell innate immune response to infection, which includes the dsRNA sensor PKR pathway. A detailed understanding of LCMV-PKR interactions can provide novel insights about mammarenavirus-host cell interactions and facilitate the development of effective anti-viral strategies against human pathogenic mammarenaviruses. In the present work, we present evidence that LCMV multiplication is enhanced in PKR-deficient cells, but pharmacological inhibition of PKR activation unexpectedly resulted in severely restricted propagation of LCMV. Likewise, we document a robust PKR activation in LCMV-infected cells in the absence of detectable levels of dsRNA. Our findings have revealed a complex role of the PKR pathway during LCMV infection and uncovered the activation of PKR as a druggable target for the development of anti-viral drugs against human pathogenic mammarenaviruses.


Subject(s)
Arenaviridae , Lymphocytic Choriomeningitis , Humans , Arenaviridae/metabolism , Cell Line , Protein Kinases/metabolism , Host-Pathogen Interactions , Lymphocytic choriomeningitis virus/metabolism , Carrier Proteins , Antiviral Agents , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
3.
J Virol ; 98(3): e0190223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421180

ABSTRACT

The role of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.1 Spike (S) on disease pathogenesis was investigated. For this, we generated recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 S gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 strain genome. The recombinant viruses were characterized in vitro and in vivo. Viral entry, cell-cell fusion, plaque size, and the replication kinetics of the rWA1-Omi-S virus were markedly impaired when compared to the rWA1-D614G virus, demonstrating a lower fusogenicity and ability to spread cell-to-cell of rWA1-Omi-S. To assess the contribution of the Omicron BA.1 S protein to SARS-CoV-2 pathogenesis, the pathogenicity of rWA1-D614G and rWA1-Omi-S viruses was compared in a feline model. While the rWA1-D614G-inoculated cats were lethargic and showed increased body temperatures on days 2 and 3 post-infection (pi), rWA1-Omi-S-inoculated cats remained subclinical and gained weight throughout the 14-day experimental period. Animals inoculated with rWA1-D614G presented higher infectious virus shedding in nasal secretions, when compared to rWA1-Omi-S-inoculated animals. In addition, tissue replication of the rWA1-Omi-S was markedly reduced compared to the rWA1-D614G, as evidenced by lower viral load in tissues on days 3 and 5 pi. Histologic examination of the nasal turbinate and lungs revealed intense inflammatory infiltration in rWA1-D614G-inoculated animals, whereas rWA1-Omi-S-inoculated cats presented only mild to modest inflammation. Together, these results demonstrate that the S protein is a major virulence determinant for SARS-CoV-2 playing a major role for the attenuated phenotype of the Omicron virus. IMPORTANCE: We have demonstrated that the Omicron BA.1.1 variant presents lower pathogenicity when compared to D614G (B.1) lineage in a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are over 50 mutations across the Omicron genome, of which more than two-thirds are present in the Spike (S) protein. To assess the role of the Omicron BA.1 S on virus pathogenesis, recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 Spike gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 were generated. While the Omicron BA.1 S promoted early entry into cells, it led to impaired fusogenic activity and cell-cell spread. Infection studies with the recombinant viruses in a relevant naturally susceptible feline model of SARS-CoV-2 infection here revealed an attenuated phenotype of rWA1-Omi-S, demonstrating that the Omi-S is a major determinant of the attenuated disease phenotype of Omicron strains.


Subject(s)
COVID-19 , Orthopoxvirus , SARS-CoV-2 , Animals , Cats , COVID-19/virology , Phenotype , SARS-CoV-2/classification , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virulence , Virulence Factors/genetics
4.
bioRxiv ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38106082

ABSTRACT

Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double strand (ds)RNA sensor protein kinase receptor (PKR) pathway plays a critical role in the cell antiviral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the antiviral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein (NP) resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro-and antiviral activities.

5.
bioRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014074

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since emerging in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a mutant recombinant SARS-CoV-2 (nsp15mut) expressing a catalytically inactive nsp15. Infection with SARS-CoV-2 nsp15 mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type (WT) virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI culture.

6.
Nat Immunol ; 22(12): 1503-1514, 2021 12.
Article in English | MEDLINE | ID: mdl-34716452

ABSTRACT

Prevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites/genetics , COVID-19/metabolism , COVID-19/prevention & control , Disease Models, Animal , Dose-Response Relationship, Drug , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Humans , Mice, Transgenic , Neutralization Tests , Protein Binding , Protein Conformation , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
7.
RNA ; 23(12): 1860-1873, 2017 12.
Article in English | MEDLINE | ID: mdl-28874505

ABSTRACT

Protein-only ribonuclease P (PRORP) is an enzyme responsible for catalyzing the 5' end maturation of precursor transfer ribonucleic acids (pre-tRNAs) encoded by various cellular compartments in many eukaryotes. PRORPs from plants act as single-subunit enzymes and have been used as a model system for analyzing the function of the metazoan PRORP nuclease subunit, which requires two additional proteins for efficient catalysis. There are currently few molecular details known about the PRORP-pre-tRNA complex. Here, we characterize the determinants of substrate recognition by the single subunit Arabidopsis thaliana PRORP1 and PRORP2 using kinetic and thermodynamic experiments. The salt dependence of binding affinity suggests 4-5 contacts with backbone phosphodiester bonds on substrates, including a single phosphodiester contact with the pre-tRNA 5' leader, consistent with prior reports of short leader requirements. PRORPs contain an N-terminal pentatricopeptide repeat (PPR) domain, truncation of which results in a >30-fold decrease in substrate affinity. While most PPR-containing proteins have been implicated in single-stranded sequence-specific RNA recognition, we find that the PPR motifs of PRORPs recognize pre-tRNA substrates differently. Notably, the PPR domain residues most important for substrate binding in PRORPs do not correspond to positions involved in base recognition in other PPR proteins. Several of these residues are highly conserved in PRORPs from algae, plants, and metazoans, suggesting a conserved strategy for substrate recognition by the PRORP PPR domain. Furthermore, there is no evidence for sequence-specific interactions. This work clarifies molecular determinants of PRORP-substrate recognition and provides a new predictive model for the PRORP-substrate complex.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , RNA Precursors/metabolism , RNA, Plant/metabolism , RNA, Transfer/metabolism , Ribonuclease P/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Base Sequence , Nucleic Acid Conformation , RNA Precursors/chemistry , RNA Precursors/genetics , RNA, Plant/chemistry , RNA, Plant/genetics , RNA, Transfer/chemistry , RNA, Transfer/genetics , Ribonuclease P/chemistry , Ribonuclease P/genetics
8.
Circ Cardiovasc Qual Outcomes ; 5(6): e78-85, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23170006

ABSTRACT

BACKGROUND: Implantable cardioverter-defibrillators (ICDs) are increasingly used for primary prevention after randomized, controlled trials demonstrating that they reduce the risk of death in patients with left ventricular systolic dysfunction. The extent to which the clinical characteristics and long-term outcomes of unselected, community-based patients with left ventricular systolic dysfunction undergoing primary prevention ICD implantation in a real-world setting compare with those enrolled in the randomized, controlled trials is not well characterized. This study is being conducted to address these questions. METHODS AND RESULTS: The study cohort includes consecutive patients undergoing primary prevention ICD placement between January 1, 2006 and December 31, 2009 in 7 health plans. Baseline clinical characteristics were acquired from the National Cardiovascular Data Registry ICD Registry. Longitudinal data collection is underway, and will include hospitalization, mortality, and resource use from standardized health plan data archives. Data regarding ICD therapies will be obtained through chart abstraction and adjudicated by a panel of experts in device therapy. Compared with the populations of primary prevention ICD therapy randomized, controlled trials, the cohort (n=2621) is on average significantly older (by 2.5-6.5 years), more often female, more often from racial and ethnic minority groups, and has a higher burden of coexisting conditions. The cohort is similar, however, to a national population undergoing primary prevention ICD placement. CONCLUSIONS: Patients undergoing primary prevention ICD implantation in this study differ from those enrolled in the randomized, controlled trials that established the efficacy of ICDs. Understanding a broad range of health outcomes, including ICD therapies, will provide patients, clinicians, and policy makers with contemporary data to inform decision-making.


Subject(s)
Death, Sudden, Cardiac/prevention & control , Defibrillators, Implantable , Electric Countershock/instrumentation , Primary Prevention/methods , Ventricular Dysfunction, Left/therapy , Aged , Chi-Square Distribution , Death, Sudden, Cardiac/etiology , Electric Countershock/adverse effects , Electric Countershock/mortality , Female , Hospitalization , Humans , Longitudinal Studies , Male , Middle Aged , Registries , Research Design , Time Factors , Treatment Outcome , United States , Ventricular Dysfunction, Left/complications , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/mortality
9.
J Oncol Pract ; 4(4): 162-8, 2008 Jul.
Article in English | MEDLINE | ID: mdl-20856765

ABSTRACT

Potential strategies to overcome barriers to enrollment of seniors into early-phase trials.

10.
J Strength Cond Res ; 21(1): 289-95, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17313261

ABSTRACT

In order to investigate the effects of a resistance training modality on cycling performance, 23 trained club-level cyclists were placed into high resistance/low repetition (H-Res), low resistance/high repetition (H-Rep), or cycling-only groups for a 10-week program. All 3 groups followed the same cycling plan, but the H-Res and H-Rep groups added resistance training. Testing pre and post consisted of a graded incremental lactate profile test on an ergometer, with blood lactate being sampled. VO2 values were measured to determine economy. Maximum strength testing of 4 strength exercises targeting the lower extremity musculature was conducted with the H-Res and H-Rep groups. There were significant gains in all 4 resistance training exercises (p < 0.05) for both H-Res and H-Rep, with the H-Res group having significantly greater gains than the H-Rep group had in the leg press exercise (p < 0.05). There were, however, no significant group x training differences (p > 0.05) found between the 3 training groups on the cycling test in lactate values or economy. It appears that for this population of cyclists, neither H-Res nor H-Rep resistance training provided any additional performance benefit in a graded incremental cycling test when compared with cycling alone over a training time of this length. It is possible that with this population, various factors such as acute fatigue, strength, and aerobic gains from the cycling training, in addition to well-developed bases of strength and conditioning from previous training, reduced differences between groups in both strength gains and cycling performance.


Subject(s)
Bicycling/physiology , Ergometry , Physical Education and Training/methods , Weight Lifting/physiology , Adult , Analysis of Variance , Female , Humans , Lactic Acid/blood , Male , Oxygen Consumption/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...