Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cogn Neurodyn ; 18(1): 133-146, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38406203

ABSTRACT

Electroencephalography (EEG) is a crucial non-invasive medical tool for diagnosing neurological disorder called encephalopathy. There is a requirement for powerful signal processing algorithms as EEG patterns in encephalopathies are not specific to a particular etiology. As visual examination and linear methods of EEG analysis are not sufficient to get the subtle information regarding various neuro pathologies, non-linear analysis methods can be employed for exploring the dynamic, complex and chaotic nature of EEG signals. This work aims identifying and differentiating the patterns specific to cerebral dysfunctions associated with Encephalopathy using Recurrence Quantification Analysis and Fractal Dimension algorithms. This study analysed six RQA features, namely, recurrence rate, determinism, laminarity, diagonal length, diagonal entropy and trapping time and comparing them with fractal dimensions, namely, Higuchi's and Katz's fractal dimension. Fractal dimensions were found to be lower for encephalopathy cases showing decreased complexity when compared to that of normal healthy subjects. On the other hand, RQA features were found to be higher for encephalopathy cases indicating higher recurrence and more periodic patterns in EEGs of encephalopathy compared to that of normal healthy controls. The feature reduction was then performed using Principal Component Analysis and fed to three promising classifiers: SVM, Random Forest and Multi-layer Perceptron. The resultant system provides a practically realizable pipeline for the diagnosis of encephalopathy.

2.
Neurosci Lett ; 765: 136269, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34582974

ABSTRACT

Electroencephalogram (EEG) signals portray hidden neuronal interactions in the brain and indicate brain dynamics. These signals are dynamic, complex, chaotic and nonlinear, the nature of which is represented with features - fractal dimensions, entropies and chaotic features. This study aims at examining the discriminative power of individual features and their combination in the diagnosis of a neuro-pathological condition called encephalopathy. Feature combination is accomplished with the help of feature selection using Gini impurity score that improves discriminative power and keeps redundancy minimal. Further, three widely used non-parametric classifiers which are known to be effective with wavelet features on EEG signals - Support Vector Machine, Random Forest, Multilayer Perceptron - are employed for disease classification. The models created by the combination of aforementioned stages are analysed and evaluated with performance scores, leading to an optimal model for automated diagnostic applications.


Subject(s)
Brain Diseases/diagnosis , Electroencephalography/methods , Support Vector Machine , Wavelet Analysis , Humans , Nonlinear Dynamics
3.
Neurol Res Int ; 2018: 8192820, 2018.
Article in English | MEDLINE | ID: mdl-30002930

ABSTRACT

Chaotic analysis is a relatively novel area in the study of physiological signals. Chaotic features of electroencephalogram have been analyzed in various disease states like epilepsy, Alzheimer's disease, sleep disorders, and depression. All these diseases have primary involvement of the brain. Our study examines the chaotic parameters in metabolic encephalopathy, where the brain functions are involved secondary to a metabolic disturbance. Our analysis clearly showed significant lower values for chaotic parameters, correlation dimension, and largest Lyapunov exponent for EEG in patients with metabolic encephalopathy compared to normal EEG. The chaotic features of EEG have been shown in previous studies to be an indicator of the complexity of brain dynamics. The smaller values of chaotic features for encephalopathy suggest that normal complexity of brain function is reduced in encephalopathy. To the best knowledge of the authors, no similar work has been reported on metabolic encephalopathy. This finding may be useful to understand the neurobiological phenomena in encephalopathy. These chaotic features are then utilized as feature sets for Support Vector Machine classifier to identify cases of encephalopathy from normal healthy subjects yielding high values of accuracy. Thus, we infer that chaotic measures are EEG parameters sensitive to functional alterations of the brain, caused by encephalopathy.

4.
Neurol Res Int ; 2018: 1613456, 2018.
Article in English | MEDLINE | ID: mdl-30057813

ABSTRACT

EEG analysis in the field of neurology is customarily done using frequency domain methods like fast Fourier transform. A complex biomedical signal such as EEG is best analysed using a time-frequency algorithm. Wavelet decomposition based analysis is a relatively novel area in EEG analysis and for extracting its subbands. This work aims at exploring the use of discrete wavelet transform for extracting EEG subbands in encephalopathy. The subband energies were then calculated and given as feature sets to SVM classifier for identifying cases of encephalopathy from normal healthy subjects. Out of various combinations of subband energies, energy of delta subband yielded highest performance parameters for SVM classifier with an accuracy of 90.4% in identifying encephalopathy cases.

SELECTION OF CITATIONS
SEARCH DETAIL