Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
JACC Cardiovasc Imaging ; 17(4): 411-424, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38300202

ABSTRACT

BACKGROUND: Imaging with late gadolinium enhancement (LGE) magnetic resonance (MR) and 18F-fluorodeoxyglucose (18F-FDG) PET allows complementary assessment of myocardial injury and disease activity and has shown promise for improved characterization of active cardiac sarcoidosis (CS) based on the combined positive imaging outcome, MR(+)PET(+). OBJECTIVES: This study aims to evaluate qualitative and quantitative assessments of hybrid MR/PET imaging in CS and to evaluate its association with cardiac-related outcomes. METHODS: A total of 148 patients with suspected CS underwent hybrid MR/PET imaging. Patients were classified based on the presence/absence of LGE (MR+/MR-), presence/absence of 18F-FDG (PET+/PET-), and pattern of 18F-FDG uptake (focal/diffuse) into the following categories: MR(+)PET(+)FOCAL, MR(+)PET(+)DIFFUSE, MR(+)PET(-), MR(-)PET(+)FOCAL, MR(-)PET(+)DIFFUSE, MR(-)PET(-). Further analysis classified MR positivity based on %LGE exceeding 5.7% as MR(+/-)5.7%. Quantitative values of standard uptake value, target-to-background ratio, target-to-normal-myocardium ratio (TNMRmax), and T2 were measured. The primary clinical endpoint was met by the occurrence of cardiac arrest, ventricular tachycardia, or secondary prevention implantable cardioverter-defibrillator (ICD) before the end of the study. The secondary endpoint was met by any of the primary endpoint criteria plus heart failure or heart block. MR/PET imaging results were compared between those meeting or not meeting the clinical endpoints. RESULTS: Patients designated MR(+)5.7%PET(+)FOCAL had increased odds of meeting the primary clinical endpoint compared to those with all other imaging classifications (unadjusted OR: 9.2 [95% CI: 3.0-28.7]; P = 0.0001), which was higher than the odds based on MR or PET alone. TNMRmax achieved an area under the receiver-operating characteristic curve of 0.90 for separating MR(+)PET(+)FOCAL from non-MR(+)PET(+)FOCAL, and 0.77 for separating those reaching the clinical endpoint from those not reaching the clinical endpoint. CONCLUSIONS: Hybrid MR/PET image-based classification of CS was statistically associated with clinical outcomes in CS. TNMRmax had modest sensitivity and specificity for quantifying the imaging-based classification MR(+)PET(+)FOCAL and was associated with outcomes. Use of combined MR and PET image-based classification may have use in prognostication and treatment management in CS.


Subject(s)
Cardiomyopathies , Myocarditis , Sarcoidosis , Humans , Fluorodeoxyglucose F18 , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/therapy , Cardiomyopathies/complications , Contrast Media , Radiopharmaceuticals , Predictive Value of Tests , Gadolinium , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Myocarditis/complications , Magnetic Resonance Spectroscopy , Sarcoidosis/diagnostic imaging , Sarcoidosis/therapy , Sarcoidosis/complications
2.
J Heart Lung Transplant ; 43(4): 529-538, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37951322

ABSTRACT

BACKGROUND: Previous retrospective studies suggest a good diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET)/computed tomography (CT) in left ventricular assist device (LVAD) infections. Our aim was to prospectively evaluate the role of PET/CT in the characterization and impact on clinical management of LVAD infections. METHODS: A total of 40 patients (aged 58 [53-62] years) with suspected LVAD infection and 5 controls (aged 69 [64-71] years) underwent 18F-FDG-PET/CT. Four LVAD components were evaluated: exit site and subcutaneous driveline (peripheral), pump pocket, and outflow graft. The location with maximal uptake was considered the presumed site of infection. Infection was confirmed by positive culture (exit site or blood) and/or surgical findings. RESULTS: Visual uptake was present in 40 patients (100%) in the infection group vs 4 (80%) control subjects. For each individual component, the presence of uptake was more frequent in the infection than in the control group. The location of maximal uptake was most frequently the pump pocket (48%) in the infection group and the peripheral components (75%) in the control group. Maximum standard uptake values (SUVmax) were higher in the infection than in the control group: SUVmax (average all components): 6.9 (5.1-8.5) vs 3.8 (3.7-4.3), p = 0.002; SUVmax (location of maximal uptake): 10.6 ± 4.0 vs 5.4 ± 1.9, p = 0.01. Pump pocket infections were more frequent in patients with bacteremia than without bacteremia (79% vs 31%, p = 0.011). Pseudomonas (32%) and methicillin-susceptible Staphylococcus aureus (29%) were the most frequent pathogens and were associated with pump pocket infections, while Staphylococcus epidermis (11%) was associated with peripheral infections. PET/CT affected the clinical management of 83% of patients with infection, resulting in surgical debridement (8%), pump exchange (13%), and upgrade in the transplant listing status (10%), leading to 8% of urgent transplants. CONCLUSIONS: 18F-FDG-PET/CT enables the diagnosis and characterization of the extent of LVAD infections, which can significantly affect the clinical management of these patients.


Subject(s)
Bacteremia , Heart-Assist Devices , Prosthesis-Related Infections , Humans , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography/methods , Heart-Assist Devices/adverse effects , Tomography, X-Ray Computed , Retrospective Studies , Prosthesis-Related Infections/diagnostic imaging , Prosthesis-Related Infections/etiology , Bacteremia/diagnosis , Bacteremia/etiology
3.
Clin Imaging ; 106: 110030, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150854

ABSTRACT

OBJECTIVE: As indications for sub-lobar resections increase, it will become more important to identify risk factors for postsurgical recurrence. We investigated retrospectively the association between local recurrence after sub-lobar resection of neoplastic lung lesions and pre- and post-operative CT imaging and pathologic features. MATERIALS AND METHODS: We reviewed retrospectively neoplastic lung lesions with postoperative chest CT surveillance of sub-lobar resections in 2006-2016. We defined "suspicious" findings as nodularity ≥3 mm or soft tissue thickening ≥4 mm along the suture line and/or progression and explored their association with local recurrence. Primary lung cancer stage, tumoral invasion of lymphatics, visceral pleura or large vessels, bronchial and vascular margin distance were also assessed. RESULTS: Our study group included 45 cases of sub-lobar resection took for either primary (n = 37) or metastatic (n = 8) lung tumors. Local recurrence was observed in 16 of those patients. New nodularity ≥3 mm or soft tissue thickening ≥4 mm along the suture line on surveillance CT was significantly associated with local recurrence (p = 0.037). Additionally, solid nodule (p = 0.005), age at surgery ≤60 years (p = 0.006), two or more sites of invasion (p < 0.0001) and poor histologic differentiation (p = 0.0001) were also significantly associated with local tumor recurrence. Of 16 patients with surveillance post-surgical PET-CT, 15 had elevated FDG uptake. CONCLUSION: The postoperative changes along the suture line should follow a predictable time course demonstrating a pattern of stability, thinning or resolution on CT surveillance. New or increasing postoperative nodularity ≥3 mm or soft tissue thickening ≥4 mm along the suture line requires close diagnostic work-up. Surgical pathology characteristics added prognostic value on postoperative recurrence surveillance.


Subject(s)
Lung Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Middle Aged , Fluorodeoxyglucose F18 , Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Retrospective Studies , Tomography, X-Ray Computed/methods
4.
Clin Imaging ; 101: 8-21, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37262963

ABSTRACT

Imaging plays a crucial role in the postoperative monitoring of thoracic aortic repairs. With the development of multiple surgical techniques to repair the ascending aorta and aortic arch, it can be a daunting challenge for the radiologist to diagnose potential pathologies in this sea of various techniques, each with their own normal postoperative appearance and potential complications. In this paper, we will provide a comprehensive review of the postoperative imaging in the setting of thoracic aortic repairs, including the role of imaging, components of thoracic aortic repairs, the normal postoperative appearance, and potential complications.


Subject(s)
Aortic Aneurysm, Thoracic , Blood Vessel Prosthesis Implantation , Humans , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/surgery , Postoperative Complications/diagnostic imaging , Postoperative Complications/etiology , Aorta , Diagnostic Imaging , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/surgery , Aortic Aneurysm, Thoracic/complications , Blood Vessel Prosthesis Implantation/adverse effects , Blood Vessel Prosthesis Implantation/methods , Treatment Outcome
6.
Nat Commun ; 14(1): 2272, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37080956

ABSTRACT

For accurate diagnosis of interstitial lung disease (ILD), a consensus of radiologic, pathological, and clinical findings is vital. Management of ILD also requires thorough follow-up with computed tomography (CT) studies and lung function tests to assess disease progression, severity, and response to treatment. However, accurate classification of ILD subtypes can be challenging, especially for those not accustomed to reading chest CTs regularly. Dynamic models to predict patient survival rates based on longitudinal data are challenging to create due to disease complexity, variation, and irregular visit intervals. Here, we utilize RadImageNet pretrained models to diagnose five types of ILD with multimodal data and a transformer model to determine a patient's 3-year survival rate. When clinical history and associated CT scans are available, the proposed deep learning system can help clinicians diagnose and classify ILD patients and, importantly, dynamically predict disease progression and prognosis.


Subject(s)
Lung Diseases, Interstitial , Humans , Lung Diseases, Interstitial/diagnostic imaging , Disease Progression , Thorax , Tomography, X-Ray Computed/methods , Retrospective Studies , Lung/diagnostic imaging
7.
Clin Imaging ; 97: 14-21, 2023 May.
Article in English | MEDLINE | ID: mdl-36868033

ABSTRACT

INTRODUCTION: Interpretation of high-resolution CT images plays an important role in the diagnosis and management of interstitial lung diseases. However, interreader variation may exist due to varying levels of training and expertise. This study aims to evaluate interreader variation and the role of thoracic radiology training in classifying interstitial lung disease (ILD). METHODS: This is a retrospective study where seven physicians (radiologists, thoracic radiologists, and a pulmonologist) classified the subtypes of ILD of 128 patients from a tertiary referral center, all selected from the Interstitial Lung Disease Registry which consists of patients from November 2014 to January 2021. Each patient was diagnosed with a subtype of interstitial lung disease by a consensus diagnosis from pathology, radiology, and pulmonology. Each reader was provided with only clinical history, only CT images, or both. Reader sensitivity and specificity and interreader agreements using Cohen's κ were calculated. RESULTS: Interreader agreement based only on clinical history, only on radiologic information, or combination of both was most consistent amongst readers with thoracic radiology training, ranging from fair (Cohen's κ: 0.2-0.46), moderate to almost perfect (Cohen's κ: 0.55-0.92), and moderate to almost perfect (Cohen's κ: 0.53-0.91) respectively. Radiologists with any thoracic training showed both increased sensitivity and specificity for NSIP as compared to other radiologists and the pulmonologist when using only clinical history, only CT information, or combination of both (p < 0.05). CONCLUSIONS: Readers with thoracic radiology training showed the least interreader variation and were more sensitive and specific at classifying certain subtypes of ILD. SUMMARY SENTENCE: Thoracic radiology training may improve sensitivity and specificity in classifying ILD based on HRCT images and clinical history.


Subject(s)
Lung Diseases, Interstitial , Radiology , Humans , Retrospective Studies , Tomography, X-Ray Computed/methods , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/pathology , Radiography, Thoracic , Radiology/education , Lung/pathology
8.
Magn Reson Imaging ; 96: 135-143, 2023 02.
Article in English | MEDLINE | ID: mdl-36503014

ABSTRACT

Patients recovered from COVID-19 may develop long-COVID symptoms in the lung. For this patient population (post-COVID patients), they may benefit from longitudinal, radiation-free lung MRI exams for monitoring lung lesion development and progression. The purpose of this study was to investigate the performance of a spiral ultrashort echo time MRI sequence (Spiral-VIBE-UTE) in a cohort of post-COVID patients in comparison with CT and to compare image quality obtained using different spiral MRI acquisition protocols. Lung MRI was performed in 36 post-COVID patients with different acquisition protocols, including different spiral sampling reordering schemes (line in partition or partition in line) and different breath-hold positions (inspiration or expiration). Three experienced chest radiologists independently scored all the MR images for different pulmonary structures. Lung MR images from spiral acquisition protocol that received the highest image quality scores were also compared against corresponding CT images in 27 patients for evaluating diagnostic image quality and lesion identification. Spiral-VIBE-UTE MRI acquired with the line in partition reordering scheme in an inspiratory breath-holding position achieved the highest image quality scores (score range = 2.17-3.69) compared to others (score range = 1.7-3.29). Compared to corresponding chest CT images, three readers found that 81.5% (22 out of 27), 81.5% (22 out of 27) and 37% (10 out of 27) of the MR images were useful, respectively. Meanwhile, they all agreed that MRI could identify significant lesions in the lungs. The Spiral-VIBE-UTE sequence allows for fast imaging of the lung in a single breath hold. It could be a valuable tool for lung imaging without radiation and could provide great value for managing different lung diseases including assessment of post-COVID lesions.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/diagnostic imaging , Lung/diagnostic imaging , Lung/pathology , Magnetic Resonance Imaging/methods , Breath Holding , Imaging, Three-Dimensional/methods
9.
Radiol Artif Intell ; 4(5): e210315, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36204533

ABSTRACT

Purpose: To demonstrate the value of pretraining with millions of radiologic images compared with ImageNet photographic images on downstream medical applications when using transfer learning. Materials and Methods: This retrospective study included patients who underwent a radiologic study between 2005 and 2020 at an outpatient imaging facility. Key images and associated labels from the studies were retrospectively extracted from the original study interpretation. These images were used for RadImageNet model training with random weight initiation. The RadImageNet models were compared with ImageNet models using the area under the receiver operating characteristic curve (AUC) for eight classification tasks and using Dice scores for two segmentation problems. Results: The RadImageNet database consists of 1.35 million annotated medical images in 131 872 patients who underwent CT, MRI, and US for musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, abdominal, and pulmonary pathologic conditions. For transfer learning tasks on small datasets-thyroid nodules (US), breast masses (US), anterior cruciate ligament injuries (MRI), and meniscal tears (MRI)-the RadImageNet models demonstrated a significant advantage (P < .001) to ImageNet models (9.4%, 4.0%, 4.8%, and 4.5% AUC improvements, respectively). For larger datasets-pneumonia (chest radiography), COVID-19 (CT), SARS-CoV-2 (CT), and intracranial hemorrhage (CT)-the RadImageNet models also illustrated improved AUC (P < .001) by 1.9%, 6.1%, 1.7%, and 0.9%, respectively. Additionally, lesion localizations of the RadImageNet models were improved by 64.6% and 16.4% on thyroid and breast US datasets, respectively. Conclusion: RadImageNet pretrained models demonstrated better interpretability compared with ImageNet models, especially for smaller radiologic datasets.Keywords: CT, MR Imaging, US, Head/Neck, Thorax, Brain/Brain Stem, Evidence-based Medicine, Computer Applications-General (Informatics) Supplemental material is available for this article. Published under a CC BY 4.0 license.See also the commentary by Cadrin-Chênevert in this issue.

10.
Clin Imaging ; 90: 71-77, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35926316

ABSTRACT

OBJECTIVES: To investigate the incidence, risk factors, and outcomes of barotrauma (pneumomediastinum and subcutaneous emphysema) in mechanically ventilated COVID-19 patients. To describe the chest radiography patterns of barotrauma and understand the development in relation to mechanical ventilation and patient mortality. METHODS: We performed a retrospective study of 363 patients with COVID-19 from March 1 to April 8, 2020. Primary outcomes were pneumomediastinum or subcutaneous emphysema with or without pneumothorax, pneumoperitoneum, or pneumoretroperitoneum. The secondary outcomes were length of intubation and death. In patients with pneumomediastinum and/or subcutaneous emphysema, we conducted an imaging review to determine the timeline of barotrauma development. RESULTS: Forty three out of 363 (12%) patients developed barotrauma radiographically. The median time to development of either pneumomediastinum or subcutaneous emphysema was 2 days (IQR 1.0-4.5) after intubation and the median time to pneumothorax was 7 days (IQR 2.0-10.0). The overall incidence of pneumothorax was 28/363 (8%) with an incidence of 17/43 (40%) in the barotrauma cohort and 11/320 (3%) in those without barotrauma (p ≤ 0.001). In total, 257/363 (71%) patients died with an increase in mortality in those with barotrauma 33/43 (77%) vs. 224/320 (70%). When adjusting for covariates, barotrauma was associated with increased odds of death (OR 2.99, 95% CI 1.25-7.17). CONCLUSION: Barotrauma is a frequent complication of mechanically ventilated COVID-19 patients. In comparison to intubated COVID-19 patients without barotrauma, there is a higher rate of pneumothorax and an increased risk of death.


Subject(s)
Barotrauma , COVID-19 , Mediastinal Emphysema , Pneumothorax , Subcutaneous Emphysema , Barotrauma/complications , Barotrauma/etiology , COVID-19/epidemiology , Humans , Incidence , Mediastinal Emphysema/diagnostic imaging , Mediastinal Emphysema/epidemiology , Mediastinal Emphysema/etiology , Pneumothorax/diagnostic imaging , Pneumothorax/epidemiology , Pneumothorax/etiology , Prognosis , Retrospective Studies , Subcutaneous Emphysema/diagnostic imaging , Subcutaneous Emphysema/epidemiology , Subcutaneous Emphysema/etiology
11.
JACC Cardiovasc Imaging ; 15(1): 108-120, 2022 01.
Article in English | MEDLINE | ID: mdl-34274283

ABSTRACT

OBJECTIVES: This study investigated whether pulmonary artery (PA) 18F-FDG uptake is associated with hypertension, and if it correlates to elevated pulmonary pressures. BACKGROUND: 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with computed tomography or cardiac magnetic resonance (CMR) has been used to assess inflammation mostly in large arteries of the systemic circulation. Much less is known about inflammation of the vasculature of the pulmonary system and its relationship to pulmonary hypertension (PH). METHODS: In a single-center cohort of 175 patients with suspected cardiac sarcoidosis, who underwent hybrid thoracic PET/CMR, 18F-FDG uptake in the PA was quantified according to maximum standardized uptake value (SUVmax) and target-to-background ratio (TBR) and compared with available results from right heart catheterization (RHC) or transthoracic echocardiography (TTE). RESULTS: Thirty-three subjects demonstrated clear 18F-FDG uptake in the PA wall. In the subgroup of patients who underwent RHC (n = 10), the mean PA pressure was significantly higher in the group with PA 18F-FDG uptake compared with the group without uptake (34.4 ± 7.2 mm Hg vs 25.6 ± 9.3 mm Hg; P = 0.003), and 9 (90%) patients with PA 18F-FDG uptake had PH when a mean PA pressure cutoff of 25 mm Hg was used compared with 18 (45%) in the nonuptake group (P < 0.05). In the subgroup that underwent TTE, signs of PH were present in a significantly higher number of patients with PA 18F-FDG uptake (14 [51.9%] vs 37 [29.8%]; P < 0.05). Qualitative assessment of 18F-FDG uptake in the PA wall showed a sensitivity of 33% and specificity of 96% for separating patients with PH based on RHC-derived PA pressures. SUVmax and TBR in the PA wall correlated with PA pressure derived from RHC and/or TTE. CONCLUSIONS: We demonstrate that 18F-FDG uptake by PET/CMR in the PA is associated with PH and that its intensity correlates with PA pressure.


Subject(s)
Hypertension, Pulmonary , Sarcoidosis , Fluorodeoxyglucose F18 , Humans , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/etiology , Magnetic Resonance Spectroscopy , Positron-Emission Tomography , Predictive Value of Tests , Pulmonary Artery , Radiopharmaceuticals , Sarcoidosis/complications , Sarcoidosis/diagnostic imaging , Sarcoidosis/pathology
12.
Clin Imaging ; 77: 283-286, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34171741

ABSTRACT

OBJECTIVE: To evaluate the influence of coronary artery dominance on observed coronary artery calcification burden in outpatients presenting for coronary computed tomography angiography (CCTA). METHODS: A 12-month retrospective review was performed of all CCTAs at a single institution. Coronary arterial dominance, Agatston score and presence or absence of cardiovascular risk factors including hypertension (HTN), hyperlipidemia (HLD), diabetes and smoking were recorded. Dominance groups were compared in terms of calcium score adjusted for covariates using analysis of covariance based on ranks. Only covariates observed to be significant independent predictors of the relevant outcome were included in each analysis. All statistical tests were conducted at the two-sided 5% significance level. RESULTS: 1223 individuals, 618 women and 605 men were included, mean age 60 years (24-93 years). Right coronary dominance was observed in 91.7% (n = 1109), left dominance in 8% (n = 98), and codominance in 1.3% (n = 16). The distribution of patients among Agatston score severity categories significantly differed between codominant and left (p = 0.008), and codominant and right (p = 0.022) groups, with higher prevalence of either zero or severe CAC in the codominant patients. There was no significant difference in Agatston score between dominance groups. In the subset of individuals with coronary artery calcification, Agatston score was significantly higher in codominant versus left dominant patients (mean Agatston score 595 ± 520 vs. mean 289 ± 607, respectively; p = 0.049), with a trend towards higher scores in comparison to the right-dominant group (p = 0.093). Significance was not maintained upon adjustment for covariates. CONCLUSIONS: While the distribution of Agatston score severity categories differed in codominant versus right- or left-dominant patients, there was no significant difference in Agatston score based on coronary dominance pattern in our cohort. Reporting and inclusion of codominant subsets in larger investigations may elucidate whether codominant anatomy is associated with differing risk.


Subject(s)
Coronary Artery Disease , Vascular Calcification , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Vessels/diagnostic imaging , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , Vascular Calcification/diagnostic imaging , Vascular Calcification/epidemiology
13.
Atherosclerosis ; 325: 110-116, 2021 05.
Article in English | MEDLINE | ID: mdl-33896592

ABSTRACT

BACKGROUND AND AIMS: Electronic cigarette (EC) use is popular among youth, touted as a safer alternative to smoking and promoted as a tool to aid in smoking cessation. EC cardiovascular safety however is not well established. The aim of this study was to examine cardiovascular consequences of EC use by evaluating their effect on the entire atherosclerotic cascade in young adults using noninvasive combined positron emission tomography (PET)/magnetic resonance imaging (MR) and comparing EC use with age matched smokers of traditional cigarettes and nonsmoking controls. METHODS: Carotid PET/MR was applied to look at vascular inflammation (18-fluorodeoxyglucose (FDG)-PET) and plaque burden (multi-contrast MR of vessel wall) from 60 18-30 year-old subjects (20 electronic cigarette users, 20 traditional smokers and 20 nonsmokers). RESULTS: Groups were reasonably well balanced in terms of age, gender, demographics, cardiovascular risk and most biomarkers. There were no differences in vascular inflammation as measured by 18-FDG-PET target to background ratios (TBR) between EC users, traditional cigarette smokers and nonsmokers. However, measures of carotid plaque burden - wall area, normalized wall index, and wall thickness - measured from MR were significantly higher in both traditional smokers and EC users than in nonsmokers. CONCLUSIONS: Young adult EC users, smokers and nonsmokers in our study did not exhibit vascular inflammation as defined by 18-F-FDG-PET TBR max, but smokers and EC users had significantly more carotid plaque burden compared to matched nonsmokers. Results could indicate that vaping does not cause an increase in vascular inflammation as measured by FDG-PET.


Subject(s)
Atherosclerosis , Electronic Nicotine Delivery Systems , Adolescent , Atherosclerosis/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , Inflammation/diagnostic imaging , Positron-Emission Tomography , Smokers , Young Adult
14.
Radiol Artif Intell ; 3(2): e200098, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33928257

ABSTRACT

PURPOSE: To train a deep learning classification algorithm to predict chest radiograph severity scores and clinical outcomes in patients with coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS: In this retrospective cohort study, patients aged 21-50 years who presented to the emergency department (ED) of a multicenter urban health system from March 10 to 26, 2020, with COVID-19 confirmation at real-time reverse-transcription polymerase chain reaction screening were identified. The initial chest radiographs, clinical variables, and outcomes, including admission, intubation, and survival, were collected within 30 days (n = 338; median age, 39 years; 210 men). Two fellowship-trained cardiothoracic radiologists examined chest radiographs for opacities and assigned a clinically validated severity score. A deep learning algorithm was trained to predict outcomes on a holdout test set composed of patients with confirmed COVID-19 who presented between March 27 and 29, 2020 (n = 161; median age, 60 years; 98 men) for both younger (age range, 21-50 years; n = 51) and older (age >50 years, n = 110) populations. Bootstrapping was used to compute CIs. RESULTS: The model trained on the chest radiograph severity score produced the following areas under the receiver operating characteristic curves (AUCs): 0.80 (95% CI: 0.73, 0.88) for the chest radiograph severity score, 0.76 (95% CI: 0.68, 0.84) for admission, 0.66 (95% CI: 0.56, 0.75) for intubation, and 0.59 (95% CI: 0.49, 0.69) for death. The model trained on clinical variables produced an AUC of 0.64 (95% CI: 0.55, 0.73) for intubation and an AUC of 0.59 (95% CI: 0.50, 0.68) for death. Combining chest radiography and clinical variables increased the AUC of intubation and death to 0.88 (95% CI: 0.79, 0.96) and 0.82 (95% CI: 0.72, 0.91), respectively. CONCLUSION: The combination of imaging and clinical information improves outcome predictions.Supplemental material is available for this article.© RSNA, 2020.

15.
Clin Imaging ; 77: 1-8, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33601125

ABSTRACT

BACKGROUND: Recent studies have demonstrated a complex interplay between comorbid cardiovascular disease, COVID-19 pathophysiology, and poor clinical outcomes. Coronary artery calcification (CAC) may therefore aid in risk stratification of COVID-19 patients. METHODS: Non-contrast chest CT studies on 180 COVID-19 patients ≥ age 21 admitted from March 1, 2020 to April 27, 2020 were retrospectively reviewed by two radiologists to determine CAC scores. Following feature selection, multivariable logistic regression was utilized to evaluate the relationship between CAC scores and patient outcomes. RESULTS: The presence of any identified CAC was associated with intubation (AOR: 3.6, CI: 1.4-9.6) and mortality (AOR: 3.2, CI: 1.4-7.9). Severe CAC was independently associated with intubation (AOR: 4.0, CI: 1.3-13) and mortality (AOR: 5.1, CI: 1.9-15). A greater CAC score (UOR: 1.2, CI: 1.02-1.3) and number of vessels with calcium (UOR: 1.3, CI: 1.02-1.6) was associated with mortality. Visualized coronary stent or coronary artery bypass graft surgery (CABG) had no statistically significant association with intubation (AOR: 1.9, CI: 0.4-7.7) or death (AOR: 3.4, CI: 1.0-12). CONCLUSION: COVID-19 patients with any CAC were more likely to require intubation and die than those without CAC. Increasing CAC and number of affected arteries was associated with mortality. Severe CAC was associated with higher intubation risk. Prior CABG or stenting had no association with elevated intubation or death.


Subject(s)
COVID-19 , Coronary Artery Disease , Vascular Calcification , Adult , Biomarkers , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Humans , Predictive Value of Tests , Retrospective Studies , Risk Factors , SARS-CoV-2 , Vascular Calcification/diagnostic imaging , Vascular Calcification/epidemiology , Young Adult
16.
Chest ; 160(1): 238-248, 2021 07.
Article in English | MEDLINE | ID: mdl-33516703

ABSTRACT

BACKGROUND: Chest radiography (CXR) often is performed in the acute setting to help understand the extent of respiratory disease in patients with COVID-19, but a clearly defined role for negative chest radiograph results in assessing patients has not been described. RESEARCH QUESTION: Is portable CXR an effective exclusionary test for future adverse clinical outcomes in patients suspected of having COVID-19? STUDY DESIGN AND METHODS: Charts of consecutive patients suspected of having COVID-19 at five EDs in New York City between March 19, 2020, and April 23, 2020, were reviewed. Patients were categorized based on absence of findings on initial CXR. The primary outcomes were hospital admission, mechanical ventilation, ARDS, and mortality. RESULTS: Three thousand two hundred forty-five adult patients, 474 (14.6%) with negative initial CXR results, were reviewed. Among all patients, negative initial CXR results were associated with a low probability of future adverse clinical outcomes, with negative likelihood ratios of 0.27 (95% CI, 0.23-0.31) for hospital admission, 0.24 (95% CI, 0.16-0.37) for mechanical ventilation, 0.19 (95% CI, 0.09-0.40) for ARDS, and 0.38 (95% CI, 0.29-0.51) for mortality. Among the subset of 955 patients younger than 65 years and with a duration of symptoms of at least 5 days, no patients with negative CXR results died, and the negative likelihood ratios were 0.17 (95% CI, 0.12-0.25) for hospital admission, 0.09 (95% CI, 0.02-0.36) for mechanical ventilation, and 0.09 (95% CI, 0.01-0.64) for ARDS. INTERPRETATION: Initial CXR in adult patients suspected of having COVID-19 is a strong exclusionary test for hospital admission, mechanical ventilation, ARDS, and mortality. The value of CXR as an exclusionary test for adverse clinical outcomes is highest among young adults, patients with few comorbidities, and those with a prolonged duration of symptoms.


Subject(s)
COVID-19 , Hospitalization/statistics & numerical data , Lung/diagnostic imaging , Radiography, Thoracic , Respiration Disorders , Respiration, Artificial/statistics & numerical data , COVID-19/diagnosis , COVID-19/mortality , COVID-19/therapy , Female , Hospital Mortality , Humans , Male , Middle Aged , New York City/epidemiology , Predictive Value of Tests , Radiography, Thoracic/methods , Radiography, Thoracic/standards , Radiography, Thoracic/statistics & numerical data , Respiration Disorders/diagnosis , Respiration Disorders/etiology , Respiration, Artificial/methods , Retrospective Studies , SARS-CoV-2
17.
Curr Probl Diagn Radiol ; 50(3): 293-296, 2021.
Article in English | MEDLINE | ID: mdl-33082082

ABSTRACT

DESCRIPTION OF PROBLEM: Streamlining communication between radiology and referring services is vital to ensure appropriate care with minimal delays. Increased subspecialization has led to compartmentalization of the radiology department with many physicians working in disparate areas. At our hospital, we anecdotally noted that a significant portion of incoming phone calls were misdirected to the wrong workstations. This resulted in wasted time, unnecessary interruptions, and delays in care because the referring clinicians could not efficiently navigate the radiology department staffing structure. Our quality improvement project involved developing a web-based tool allowing the emergency department (ED) to more efficiently contact the appropriate radiology desk and reduce misdirected phone calls. INSTITUTIONAL APPROACH EMPLOYED TO ADDRESS THE PROBLEM: Surveys were sent to radiology residents and ED providers (attendings, residents, physician assistants) to assess how often phone calls were misdirected to the wrong radiology station. Radiology residents were asked which stations received the most misdirected phone calls, and what station the caller was often looking for. ED providers were asked which stations they intended when they were told they called the wrong station, and a series of questions in the survey assessed their knowledge of commonly called radiology station (Plain Film, CT Body, Ultrasound, Neuoradiology, Pediatrics, and Overnight Desk). ED and radiology physicians worked together to design a simple, easily accessed web-based tool that allowed the ED clinicians to determine which station should be called during for each hour of the day, which integrated differences in staffing by radiology throughout the day. After the tool had been implemented for 8 months, surveys were again sent to radiology residents and ED clinicians asking the same questions as before to assess for any significant change in response. Additional questions were added to the ED survey to assess awareness of the new tool. DESCRIPTION OF OUTCOMES IN CHANGE OF PRACTICE: An interactive, easily updated schedule with optimal contact numbers was made available through the ED intranet. The design allowed for easy modification of contact numbers over time to accommodate changes in coverage location or staffing models. Prior to implementation contact information was presented on a static screen, which was unable to be changed and included multiple incorrect and defunct numbers. Additionally, contact defaulted to a general radiology pager, which was carried by a resident only responsible for plain films for most of the day. Numbers included in the new intranet tool were all pertinent reading room stations, all scheduling desks, and all technologist workspaces. Different schedules were provided for weekdays and weekends. Initial survey results showed that prior to the intervention, 74% of radiology residents said they received misdirected phone calls at least twice a day, and 57.9% of ED respondents reached the wrong recipient at least once per day. Frequencies of misdirected calls dropped to 58.4% of radiology residents (P = 0.37) and 17.9% of ED respondents (P < 0.01) on follow-up surveys 8 months after the tool was established. After establishing the new tool, 82.1% of ED respondents were aware of the new intranet contact tool and were using it to contact radiology. On the series of questions assessing ED respondents' knowledge of radiology numbers, over 50% of respondents knew the correct answer or answered using the call sheet after implementation; this resulted in statistically significant increases in accuracy for Body, Neuroradiology, and Pediatric radiology stations. Furthermore, with the exception of ED plain films, there was a statistically significant reduction in number of responses who said the general radiology pager should be called for reads. Fifty percent of radiology residents believed there was a reduction in the number of misdirected phone calls from the ED with this tool. CONCLUSION, LIMITATIONS, AND DESCRIPTIONS OF FUTURE DIRECTIONS: Our tool was successful in accomplishing multiple goals. First, over 80% of ED respondents adopted the new tool. Second, the number of misdirected phone calls based on the subjective perception of ED respondents and radiology residents was reduced. Third, we objectively improved the ED respondents' behavior pattern in contacting the radiology department by either calling the correct number using the call tool, and by reducing the number of respondents who use the pager. Going forward, we hope to be able to expand use of this tool throughout the hospital in order to provide more timely and efficient care with other services by streamlining access between referring services and the appropriate radiology recipients.


Subject(s)
Emergency Service, Hospital , Radiology , Child , Communication , Humans , Internet , Surveys and Questionnaires
19.
Clin Imaging ; 67: 207-213, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32871424

ABSTRACT

PURPOSE: We describe the presenting characteristics and hospital course of 11 novel coronavirus (COVID-19) patients who developed spontaneous subcutaneous emphysema (SE) with or without pneumomediastinum (SPM) in the absence of prior mechanical ventilation. MATERIALS AND METHODS: A total of 11 non-intubated COVID-19 patients (8 male and 3 female, median age 61 years) developed SE and SPM between March 15 and April 30, 2020 at a multi-center urban health system in New York City. Demographics (age, gender, smoking status, comorbid conditions, and body-mass index), clinical variables (temperature, oxygen saturation, and symptoms), and laboratory values (white blood cell count, C-reactive protein, D-dimer, and peak interleukin-6) were collected. Chest radiography (CXR) and computed tomography (CT) were analyzed for SE, SPM, and pneumothorax by a board-certified cardiothoracic-fellowship trained radiologist. RESULTS: Eleven non-intubated patients developed SE, 36% (4/11) of whom had SE on their initial CXR. Concomitant SPM was apparent in 91% (10/11) of patients, and 45% (5/11) also developed pneumothorax. Patients developed SE on average 13.3 days (SD: 6.3) following symptom onset. No patients reported a history of smoking. The most common comorbidities included hypertension (6/11), diabetes mellitus (5/11), asthma (3/11), dyslipidemia (3/11), and renal disease (2/11). Four (36%) patients expired during hospitalization. CONCLUSION: SE and SPM were observed in a cohort of 11 non-intubated COVID-19 patients without any known cause or history of invasive ventilation. Further investigation is required to elucidate the underlying mechanism in this patient population.


Subject(s)
Coronavirus Infections/complications , Mediastinal Emphysema/etiology , Pneumonia, Viral/complications , Subcutaneous Emphysema/etiology , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Comorbidity , Coronavirus Infections/virology , Female , Fibrin Fibrinogen Degradation Products/metabolism , Hospitalization , Humans , Male , Mediastinal Emphysema/epidemiology , Middle Aged , Pandemics , Pneumonia, Viral/virology , Pneumothorax/epidemiology , Pneumothorax/etiology , Respiration, Artificial/adverse effects , SARS-CoV-2 , Subcutaneous Emphysema/epidemiology , Tomography, X-Ray Computed/methods
20.
World J Radiol ; 12(8): 184-194, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32913564

ABSTRACT

BACKGROUND: Gout, caused by hyperuricemia and subsequent deposition of aggregated monosodium urate crystals (MSU) in the joints or extra-articular regions, is the most common inflammatory arthritis. There is increasing evidence that gout is an independent risk factor for hypertension, cardiovascular disease progression and mortality. AIM: To evaluate if dual energy computed tomography (DECT) could identify MSU within vessel walls of gout patients, and if MSU deposits within the vasculature differed between patients with gout and controls. This study may help elucidate why individuals with gout have increased risk for cardiovascular disease. METHODS: 31 gout patients and 18 controls underwent DECT scans of the chest and abdomen. A material decomposition algorithm was used to distinguish regions of MSU (coded green), and calcifications (coded purple) from soft tissue (uncoded). Volume of green regions was calculated using a semi-automated volume assessment program. Between-group differences were analyzed using Mann-Whitney U exact test and nonparametric rank regression. RESULTS: Gout patients had significantly higher volume of MSU within the aorta compared to controls [Median (Min-Max) of 43.9 (0-1113.5) vs 2.9 (0-219.4), P = 0.01]. Number of deposits was higher in gout patients compared to controls [Median (Min-Max) of 20 (0-739) vs 1.5 (0-104), P = 0.008]. However, the difference was insignificant after adjustment for age, gender, history of cardiovascular disease and diabetes. Increased age was positively associated with total urate volume (r s = 0.64; 95% confidence interval: 0.43-0.78). CONCLUSION: This pilot study showed that DECT can quantify vascular urate deposits with variation across groups, with gout patients possibly having higher deposition. This relationship disappeared when adjusted for age, and there was a positive relationship between age and MSU deposition. While this study does not prove that green coded regions are truly MSU deposition, it corroborates recent studies that show the presence of vascular deposition.

SELECTION OF CITATIONS
SEARCH DETAIL
...